首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of pharmaceuticals in the environment is a very important problem that requires analytical solutions. The wide variety of matrices and, usually, the low pharmaceuticals levels in the environmental samples requires high sensitive and selective analytical procedures. Wastewaters are one of the more important sources of environmental pollutants but they are very complex matrices that need clean-up procedures prior the analysis. Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique used in analytical chemistry for sample pre-treatment that offers high selectivity and sensitivity compared to most traditional extraction techniques. The low organic solvent consumption derived from the use of HF-LPME is according to the current trends to a “Green Chemistry”, and Analytical Chemistry should follow these environmental good practices. This paper describes an extraction method using a polypropylene membrane supporting dihexyl ether (three-phase hollow fiber-based liquid-phase microextraction (HF-LPME)) for the direct analysis of three pharmaceuticals (salicylic acid (SAC), ibuprofen (IBU) and diclofenac (DIC)) in raw and treated wastewaters followed by a HPLC/MS-MS determination using a highly packed Pursuit® XRs Ultra 2.8 μm C18 column that allows high resolution using low flow-rates and, simultaneously, short retention times. Detection limits were 20, 100 and 300 ng L−1 for salicylic acid, diclofenac and ibuprofen, respectively.  相似文献   

2.
Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. This paper describes a three-phase HF-LPME method for ibuprofen using a polypropylene membrane supporting dihexyl ether followed by a chemiluminescence (CL) determination using the CL enhancement on the acidic permanganate-sulfite system in a FIA configuration which is the first time that both techniques have been combined for analytical purposes. The CL intensity (peak area) was proportional to the log of ibuprofen concentration in the donor phase over the range 0.1-20 μg mL−1. The detection limit was 0.03 μg mL−1 of ibuprofen in the donor phase. The method was satisfactory reproducible and has been applied to the ibuprofen determination in pharmaceuticals and in real human urine samples.  相似文献   

3.
In the present work, a novel sample pre-treatment technique for the determination of trace concentrations of some insecticide compounds in aqueous samples has been developed and applied to the determination of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame thermionic detection (GC-FTD). For the development of the method, seven organophosphorous insecticides (dichlorvos, mevinphos-cis, ethoprophos, chlorpyrifos methyl, phenthoate, methidathion and carbofenothion) and one carbamate (carbofuran) were considered as target analytes. Several factors that influence the efficiency of HF-LPME were investigated and optimized including agitation, organic solvent, sample volume, exposure time, salt additives and pH. The optimized methodology exhibited good linearity with correlation coefficient = 0.990. The analytical precision for the target analytes ranged from 4.3 to 11.1 for within-day variation and 4.6 to 12.0% for between-day variation. The detection limits for all analytes were found in the range from 0.001 to 0.072 microg/L, well below the limits established by the EC Drinking Water Directive (EEC 80/778). Relative recoveries obtained by the proposed method from drinking and river water samples ranged from 80 to 104% with coefficient of variations ranging from 4.5 to 10.7%. The present methodology is easy, rapid, sensitive and requires small sample volumes to screen environmental water samples for insecticide residues.  相似文献   

4.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   

5.
Jun Xiong  Man He 《Talanta》2010,82(3):969-2619
A method of hollow fiber (HF) liquid phase microextraction (LPME) combined with gas chromatography (GC)-flame ionization detection (FID) was developed for the simultaneous quantification of trace amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), caffeine and ketamine (KT) in drug abuser urine samples. The factors affecting on the extraction of six target analytes by HF-LPME were investigated and optimized, and the subsequent analytical performance evaluation and real sample analysis were performed by the extraction of six target analytes in sample solution containing 30% NaCl (pH 12.5) for 20 min with extraction temperature of 30 °C and stirring rate of 1000 rpm. Under such optimal conditions, the limits of detection (LODs, S/N = 3) for the six target analytes were ranged from 8 μg/L (AP, KT) to 82 μg/L (MDA), with the enrichment factors (EFs) of 5-227 folds, and the relative standard deviations (RSDs, n = 7) were in the range of 6.9-14.1%. The correlation coefficients of the calibration for the six target analytes over the dynamic linear range were higher than 0.9958. The application feasibility of HF-LPME-GC-FID in illegal drug monitoring was demonstrated by analyzing drug abuser urine samples, and the recoveries of target drugs for the spiked sample ranging from 75.2% to 119.3% indicated an excellent anti-interference capability of the developed method. The proposed method is simple, effective, sensitive and low-cost, and provides a much more accurate and sensitive detection platform over the conventional analytical techniques (such as immunological assay) for drug abuse analysis.  相似文献   

6.
A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N+). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112–198. Linearity of the method was determined to be in the range of 1.0–200.0 μg L−1 for diazepam and 2.0–200.0 μg L−1 for other analytes with coefficient of determination (R2) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5–0.7 μg L−1. The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0–98.8%.  相似文献   

7.
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single‐drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid–liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction.  相似文献   

8.
Wu Y  Hu B  Hou Y 《Journal of separation science》2008,31(21):3772-3781
Two methods based on headspace single drop microextraction (HS-SDME) and headspace hollow fiber liquid phase microextraction (HS-HF-LPME) were developed and critically compared with HPLC-UV determination of phenols (including phenol (Ph), 2-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP)) in this paper. The significant parameters affecting the extraction efficiency of the target analytes in both extraction modes were studied and the optimal extraction conditions were established. Under the optimal conditions, the detection limits (S/N = 3) for Ph, CP, DCP and TCP obtained by HS-SDME-HPLC-UV and HS-HF-LPME-HPLC-UV were 2.1, 0.2, 0.8,1.1 ng/mL and 4.2, 0.4, 0.4, 0.4 ng/mL with enrichment factors of 15.8, 198.9, 159.7, 194.8 and 9.2, 149.9, 301.9, 411.1, respectively. The RSDs obtained by HS-SDME-HPLC-UV and HS-HF-LPME-HPLC-UV were 3.7, 4.0, 9.8, 6.7% and 6.3, 3.6, 3.1, 4.8% for Ph, CP, DCP and TCP, respectively. Both extraction modes have a comparable analytical performance, but HS-HF-LPME was more robust than HS-SDME, while HS-SDME was simpler than HS-HF-LPME. The two headspace microextraction modes were applied for HPLC-UV determination of target phenols in water, honey and toner samples, and the determined values obtained by both techniques were in good agreement with each other.  相似文献   

9.
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L−1) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 μL), then back-extracted into the 6 μL acidified aqueous solution (acceptor phase, HCl 0.5 mol L−1) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 μL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L−1 NaOH with 10% NaCl; organic phase: 20 μL of toluene; acceptor phase: 6 μL of 0.5 mol L−1 HCl and 600 m mol L−1 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 μg L−1 (R > 0.9991), and also the limits of detection were in the range of 0.01-0.1 μg L−1. The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.  相似文献   

10.
The presence of pharmaceuticals in the environment due to growing worldwide consumption has become an important problem that requires analytical solutions. This paper describes a CE determination for several nonsteroidal anti‐inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac, ketorolac, aceclofenac and salicylic acid) in environmental waters using hollow fiber membrane liquid‐phase microextraction. The extraction was carried out using a polypropylene membrane supporting dihexyl ether and the electrophoretic separation was performed in acetate buffer (30 mM, pH 4) using ACN as the organic modifier. Detection limits between 0.25 and 0.86 ng/mL were obtained, respectively. The method could be applied to the direct determination of the seven anti‐inflammatories in wastewaters, and five of them have been determined or detected in different urban wastewaters.  相似文献   

11.
Three-phase hollow fiber-mediated liquid-phase microextraction followed by HPLC was used for the determination of three synthetic estrogens, namely diethylstilbestrol, dienestrol, and hexestrol, in wastewater. Extraction conditions including organic solvent, volume ratio between donor solution and acceptor phase, extraction time, stirring rate, donor phase and acceptor phase were optimized. The target compounds were extracted from a 10 mL aqueous sample at pH 1.5 (donor solution) through a 45 mm in length hollow polypropylene fiber that was immersed in 1-octanol in advance, and then the hollow fiber was filled with 10 microL 0.5 mol/L sodium hydroxide solution (acceptor phase). After a 40 min extraction, the acceptor phase was directly injected into an HPLC system for detection. Under the optimized extraction conditions, a large enrichment factor (more than 300-fold) was achieved for the three estrogens. The determination limit at an S/N of 3 ranged from 0.25 to 0.5 microg/L for the estrogens. The recovery ratio was more than 86% in the determination of these estrogens in wastewater.  相似文献   

12.
A hollow fibre liquid phase microextraction for gas chromatographic determination of some p-hydroxybenzoic acid esters has been developed. Chlorobenzene containing tetradecane as internal standard was used for the extraction. Optimized extraction was carried out at room temperature for 40 min in the presence of 0.4 g mL−1 NaCl in the sample solution. Calibration was linear up to 30 mg L−1. Correlation coefficients were 0.996–0.998. Enrichment factors were 21, 95 and 154, and detection limits were 0.20, 0.03 and 0.01 μg mL−1 for methylparaben, ethylparaben and propylparaben, respectively. Reproducibility was acceptable with relative standard deviations up to 11.7%. The technique was tested for water and urine analysis.   相似文献   

13.
A simple and efficient hollow fiber liquid‐phase microextraction (HF‐LPME) technique in conjunction with high‐performance liquid chromatography is presented for extraction and quantitative determination of aristolochic acid I in human urine samples. Several parameters influencing the efficiency of HF‐LPME were investigated and optimized, including extraction solvent, stirring rate, extraction time, pH of donor phase and acceptor phase. Excellent sample clean‐up was observed and good linearity with coefficient of 0.9999 was obtained in the range of 15.4–960 µg/L. This method provided a 230‐fold enrichment factor and good repeatability with relative standard deviations (RSD) lower than 6.0%. The limit of detection value for the analyte in urine sample was 0.01 µg/L at a signal‐to‐noise ratio of 3. The extraction recovery from urine samples was 61.8% with an RSD of 9.71%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
As the drive towards green extraction methods has gained momentum in recent years, it has not always been possible to eliminate organic solvents completely. However, the volumes employed have been reduced remarkably, so that a single microdrop is sufficient in some cases. This effort has led to the development of various liquid phase microextractions namely single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME). In this review, the historical development and overview of these miniaturized liquid phase extraction methodologies have briefly been discussed and a comprehensive collection of application of the these methods in combination with different analytical techniques for preconcentration and determination of ultra trace amounts of metals and organometal ions in various matrices have been summarized.  相似文献   

15.
复杂基质中柠檬酸的液相微萃取   总被引:2,自引:0,他引:2  
建立了一种利用液相微萃取技术进行样品前处理、高效液相色谱进行测定的复杂基质中柠檬酸分析的简便方法。研究表明,该样品前处理方法集萃取、富集、净化为一步,具有快速、有效、绿色的特点;测定方法的线性范围为0.7~600 μg/mL,相关系数为0.9995,检测限为0.27 μg/mL (S/N=3),相对标准偏差小于5%。  相似文献   

16.
A new method for the determination of ochratoxin A and T-2 toxin in alcoholic beverages (wine and beer) by hollow fiber liquid microextraction was optimized. The extraction step was followed by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The extraction procedure was based on the extraction of mycotoxins from the sample to the organic solvent (1-octanol) immobilized in the fiber, and afterwards, they were desorbed in a mixture of acetonitrile/water (80:20, v/v) at pH 7 prior to chromatographic determination. Different variables affecting the extraction process such as organic solvent, salt content, extraction time and desorption solution were studied. The developed method was validated in wine and beer, using white wine and alcoholic beer as representative matrices for both types of samples. Relative recoveries higher than 70% were obtained for the selected mycotoxins. Good linearity (R2 > 0.993) was obtained and quantification limits (0.02-0.09 μg L−1) below European regulatory levels were achieved. Repeatability, expressed as relative standard deviation, was always lower than 12%, whereas interday precision was lower than 21%. The proposed method was applied to the analysis of several types of wines and beers and ochratoxin A was detected in a rosé wine at 1.1 μg L−1.  相似文献   

17.
A simple and efficient method based on hollow fiber protected headspace liquid-phase in conjunction with high performance liquid chromatography has been introduced for extraction and determination of three residual monomers (2-ethylhexyl acrylate (EHA), vinyl acetate (VA), glycidyl methacrylate (GM)) in polymer latex. Using this methodology, the analytes of interest extracted from a sample are led into organic solvent located inside the porous hollow fiber membrane. Initially, several experimental parameters were controlled and optimized and the optimum conditions were reached with 8 cm neatly cut hollow fibers containing heptanol, which were exposed to the headspace of a 12 mL sample solution containing 20% (w/v) NaCl thermostated at 110 °C and stirred at 800 rpm for 20 min. Finally, 20 μL of the extraction solution was withdrawn into a syringe and injected into HPLC for analysis. The calibration curves were linear (r2 ≥ 0.994) over the concentration range of 0.05-10 mg L−1 for VA and 0.02-10 mg L−1 for other analytes. The relative standard deviation (RSD%) for three-replicate extractions and measurements was below 8.6%. The limits of detection of this method for quantitative determination of the analytes were found within the range of 0.005 to 0.011 mg kg−1 with the enrichment factors within the 5-164 range. The method was successfully applied for determination of residual monomers in polymer latex.  相似文献   

18.
Two methods, based on hollow fiber liquid–liquid–liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L 1 and 0.4 μg L 1 (as Hg) with precisions (RSDs (%), c = 5 μg L− 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME–GFAAS and HF-LPME–GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L 1 was obtained. Finally, HF-LLLME–GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99–113%. In order to validate the method, HF-LLLME–GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish muscle, and the determined values were in good agreement with the certified values.  相似文献   

19.
Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L.  相似文献   

20.
《Analytical letters》2012,45(8):804-830
The increasing demand of faster, less expensive, easier, and more environmentally-friendly methods has favored the miniaturization of systems for sample preparation. These new procedures have led to lower reagent and materials consumption and waste production. One extraction technique recently introduced is based on the use of hollow fibers as support to liquid membranes which enables the extraction with solvents of a different nature from a donor external phase to an acceptor phase inside the lumen of the fiber.

This is an up-to-date comprehensive review on the analytical applications of hollow fiber liquid phase microextraction (HF-LPME) that includes two and three-phase configurations, carried-mediated extraction and electromembrane extraction. A brief review on the basic extraction principles for these techniques, describing and discussing the different operation and configuration modes, has been carried out.

Supplementary materials are available for this article. Go to the publisher's online edition of Analytical Letters for the following free supplemental resources: Additional tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号