首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of 1 nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 × 10−6 M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin.  相似文献   

2.
Carbon-nanotube (CNT)-modified glassy-carbon electrodes dramatically accelerate the electrooxidation of insulin to offer an attractive amperometric detection of this important hormone. Hydrodynamic voltammograms indicate a substantial lowering of the detection potential, with oxidation starting above +0.5 V (versus Ag/AgCl) and leveling off of the response above +0.7 V. The flow-injection amperometric response (at pH 7.4) is highly linear (to at least 1000 nM), reproducible (RSD=4.8%;n=30), and fast (peak width of 45 s). The high sensitivity (48 nA/μM) and moderate detection potential (+0.8 V) lead to a low detection limit of 14 nM. Such performance characteristics compare favorably with those of previously reported metal-oxide-modified electrodes for insulin, and indicate great promise for in vivo measurements of insulin release and for monitoring this hormone in chromatographic effluents.  相似文献   

3.
A simple approach is proposed for the synthesis of cobalt hexacyanoferrate nanoparticles (CoNPs) with uniform shape and size controlled by ethylene diamine tetraacetic acid (EDTA) as a stabilizer. A sensitive amperometric biosensor for insulin has been prepared using glassy carbon electrodes by solubilization of carbon nanotubes (CNTs) in chitosan (CHIT) together with CoNPs synthesized by the new methodology. The CoNP-CNT-CHIT organic–inorganic system exerts a synergistic effect, resulting in the remarkably enhanced insulin currents owing to the superior electron-transfer ability of CNTs and the excellent reversible redox centers of CoNPs. High-resolution transmission electron microscopy (HRTEM) was used to provide closer inspection of the CoNPs. The effects of alkali metal cations and the concentrations of CNTs and CoNPs on the voltammetric behavior of the film-modified electrode were also investigated. In pH 6.98 phosphate buffer (PB) at +0.7 V (vs. SCE) the insulin biosensor exhibits a linear response range of 0.1–3 μM with a correlation coefficient of 0.98, and the detection limit (S/N=3) is determined to be 40 nM, the stability of the biosensor was tested and found satisfactory. There is great promise for in vivo measurements of this important hormone.  相似文献   

4.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

5.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

6.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

7.
A nitrite sensor based on Dawson vanodotungstophosphates α2-K7P2VW17O62·18H2O (P2W17V) and carbon nanotubes (CNTs) was prepared by electrostatic layer-by-layer self-assembly technique. The sensor {PEI/PSS/[PDDA/P2W17V-CNTs]n} was characterized by UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS). The electron transfer and sensing ability of this sensor were explored using cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) technology. The results show that the incorporation of CNTs and P2W17V into the composite film endowed the modified electrode with fast transfer rate and high electrocatalytic activity towards oxidation of nitrite. This nitrite sensor with 10 bilayers has a broad linear range of 5 × 10−8 to 2.13 × 10−3 M, a low detection limit of 0.0367 μM (S N−1 = 3), a high sensitivity of 0.35 mA mM−1 NO2, an excellent anti-interference property in the presence of other potential interfering species and a good stable. It was successfully employed for determination of nitrite in real towards.  相似文献   

8.
A critical challenge for initiating many applications of the carbon nanotubes (CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon nanotubes (CNTs)-reinforced epoxy nanocomposite by utilizing aniline trimer (AT) as the noncovalent dispersant. Tensile testing showed that the tensile modulus of the CNTs-reinforced epoxy composites was considerably improved by adding a small amount of AT functionalized CNTs. Additionally, the as-prepared CNTs-epoxy nanocomposites exhibited superior tribological properties with much lower frictional coefficients and wear rates compared to those of neat epoxy resin. The well dispersed AT-functionalized CNTs in epoxy matrix played an important role in enhancing the mechanical properties, as well as acting as a solid lubricant for improving the tribological performance of epoxy/CNTs nanocomposite.  相似文献   

9.
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.  相似文献   

10.
The potential of carbon nanotubes (CNTs) as a novel sorbent for extraction of dicamba, a highly polar acidic herbicide, from aqueous samples was evaluated. The sorption capacity of CNTs increases remarkably with decreasing sample pH. The solution of ACN and ammonia (80:20 v/v) was found to be the most effective as the eluent for desorption from a 0.2 g CNT cartridge. The method was tested for river water samples with the LOD of 2 microg/L (for 100 mL sample) and compared with C18 bonded silica.  相似文献   

11.
A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.  相似文献   

12.
MWNTs-IL-Gel/GCE, a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs) and ionic liquids (IL), was developed to serve as a sensor for simultaneous determination of Hydroquinone (HQ) and catechol (CC) in this paper. The modified GCE showed two well-defined redox waves for HQ and CC in both CV and DPV with a peak potential separation of ca. 0.1 V, which was large enough for simultaneous detection. The results revealed that the oxidation of HQ and CC with the enhancement of the redox peak current and the decrease of the peak-to-peak separation exhibit excellent electrocatalytic behaviors. A high sensitivity of 1.8×10(-7)M with detection limits of 6.7×10(-8)M and 6.0×10(-8)M (S/N=3) for HQ and CC were obtained. Moreover, the constants of apparent electron transfer rate of HQ and CC at MWNTs-IL-Gel/GCE were calculated as 7.402 s(-1) and 8.179 s(-1), respectively, and the adsorption quantity of HQ and CC was 1.408×10(-6) mol cm(-2) with chronocoulometry. The developed sensor can be applied to determinate directly of HQ and CC in aqueous solution.  相似文献   

13.
Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA).  相似文献   

14.
We review recent experimental studies on single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy (TENOM). High-resolution optical and topographic imaging with sub 15 nm spatial resolution is shown to provide novel insights into the spectroscopic properties of these nanoscale materials. In the case of semiconducting nanotubes, the simultaneous observation of Raman scattering and photoluminescence (PL) is possible, enabling a direct correlation between vibrational and electronic properties on the nanoscale. So far, applications of TENOM have focused on the spectroscopy of localized phonon modes, local band energy renormalizations induced by charge carrier doping, the environmental sensitivity of nanotube PL, and inter-nanotube energy transfer. At the end of this review we discuss the remaining limitations and challenges in this field. Figure Tip-enhanced Raman scattering and photoluminescence spectroscopy with sub 15 nm spatial resolution provides novel insights into the electronic and vibronic properties of single-walled carbon nanotubes.  相似文献   

15.
A convenient microwave plasma treatment method with ammonia precursor was proposed to enhance the solubility of carbon nanotubes (CNTs). The SEM, XRD and FTIR spectra clearly demonstrated that the carbon skeleton structure of the resultant ammonia plasma-treated CNTs (ammonia PT-CNTs) was not destroyed and amine groups of different forms were successfully coupled to CNTs in the MWP treatment process. The ammonia PT-CNTs have excellent solubility in water and are insoluble in nonpolar tetrahydrofuran, and the cyclic voltammograms suggest that the enhanced wetting properties clearly favor faster electron transfer kinetics on the ammonia PT-CNT electrodes. By choosing glucose oxidase as a model enzyme, the application of the ammonia PT-CNTs in construction of biosensors was further investigated. Due to the biocompatibility and electron transfer capability of the ammonia PT-CNTs, the resultant GOD biosensor displayed a good sensing performance. The biosensor has a fast response of less than 10 s, and the response current linearly increases with the glucose concentration in the range of 1.2 × 10−4 to 7.5 × 10−3 M with a detection limit of 1.0 × 10−5 M.  相似文献   

16.
<正>The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.  相似文献   

17.
The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL−1 (2.2 × 10−8 mol L−1) and 0.1 μg mL−1 (1.88 × 10−7 mol L−1) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.  相似文献   

18.
Guo Z  Ren J  Wang J  Wang E 《Talanta》2011,85(5):2517-2521
Ochratoxin A, a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins in the world. It has been classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. In this paper, a sensitive and selective fluorescent aptasensor for ochratoxin A (OTA) detection was constructed, utilizing single-walled carbon nanotubes (SWNTs) as quencher which can quench the fluorescence of free unfolded toxin-specific aptamer attached with FAM (carboxyfluorescein). Without any coating materials as compared to graphene-oxide based sensor, we obtained the detection limit of our sensing platform based on SWNTs to be 24.1 nM with a linear detection range from 25 nM to 200 nM. This technique responded specifically to OTA without interference from other analogues (N-acetyl-l-phenylalanine, warfarin and OTB). It has also been verified for real sample application by testing 1% beer containing buffer solution spiked with a series of concentration of OTA.  相似文献   

19.
Sha Y  Qian L  Ma Y  Bai H  Yang X 《Talanta》2006,70(3):556-560
Multilayer films containing multiwall carbon nanotubes and redox polymer were successfully fabricated on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method. UV-vis spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and electrochemical method were used to characterize the assembled multilayer films. The multilayer films modified electrodes exhibited good electrocatalytic activity towards the oxidation of ascorbic acid (AA). Compared with the bare electrode, the oxidation peak potential negatively shifted about 350 mV (versus Ag/AgCl). Furthermore, the modified screen-printed carbon electrodes (SPCEs) could be used for the determination of ascorbic acid in real samples.  相似文献   

20.
This review provides an overview of recent progress towards the development of flexible supercapacitors based on macroscopic carbon nanotubes-based electrodes, including one-dimensional (1D) fibers, 2D films, and 3D foams, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号