首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive high performance liquid chromatographic (HPLC) method for quantification of buspirone (BUSP) in rabbit serum was developed and validated. BUSP and internal standard (IS), diltiazem hydrochloride were extracted into dichloromethane and separated using an isocratic mobile phase, on a Kromasil C8 column. The eluent was monitored by UV detector at 235 nm and at a flow rate of 1.0 mL min−1. The linearity range of proposed method was 1-3000 ng mL−1. The intra-day and inter-day coefficient of variation and percent error values of the assay method were less than 15% and mean recovery was more than 97 and 96% for BUSP and IS, respectively. The method was found to be precise, accurate, and specific during the study. The method was successfully applied for pharmacokinetic study of buspirone after application of reservoir based transdermal therapeutic system of BUSP to rabbits.  相似文献   

2.
A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for quantification of aceclofenac in rat plasma. Ibuprofen was used as an internal standard (IS). The present method used protein precipitation for extraction of aceclofenac from rat plasma. Separation was carried out on reversed-phase C18 column (250 mm × 4.6 mm, 5 μ) and the column effluent was monitored by UV detector at 282 nm. The mobile phase used was methanol-triethylamine (pH 7.0; 0.3% v/v in Milli-Q water) (60:40%, v/v) at a flow rate of 1.0 mL min−1. This method was linear over the range of 50.0-3500.0 ng mL−1 with regression coefficient greater than 0.99. The mean recovery of aceclofenac and IS were 84.62 ± 3.23 and 89.19 ± 1.57%, respectively and the method was found to be precise, accurate, and specific during the study. The method was successfully applied for pharmacokinetic study of aceclofenac in rats.  相似文献   

3.
A simple, sensitive and accurate reverse phase high-performance liquid chromatographic (RP-HPLC) method with photo-diode array detector (PDA) was developed and validated for the determination of amphotericin B (AMB) in the rat plasma using a new internal standard (IS) α-naphthol. The plasma samples were subjected to protein precipitation with methanol prior to a HPLC analysis. Chromatographic separations were achieved on a Nucleosil® 100-5C18 (150 mm × 4.6 mm) column. The mobile phase consisted of acetonitrile and sodium acetate buffer (pH 4; 10 mM) in a gradient mode. Detection was carried out at a wavelength of 407 and 294 nm for AMB and IS, respectively. The retention times of AMB and IS were about 6.8 and 7.8 min, respectively. The calibration curve was linear in the range of 10-2000 ng mL−1 for AMB (r2 > 0.998). No significant matrix effect was observed on quantification of AMB or IS. At three quality control concentrations of 20, 500, and 2000 ng mL−1, the intra-day and inter-day relative standard deviation ranged from 1.13% to 4.91%. The limit of detection (LOD) was 5 ng mL−1 and the limit of quantification (LOQ) was 10 ng mL−1 for AMB in rat plasma. This method is simple, sensitive, rapid and does not require any extensive sample purification before injecting into HPLC.  相似文献   

4.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

5.
In this work the least-squares background correction (LSBC) and internal standardization (IS) techniques were combined to eliminate spectral and transport interferences in the determination of Pb in phosphoric acid by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). Blanks, samples and reference solutions [0.10–1.00 mg L− 1 Pb in 1% (v/v) HNO3] were spiked with 4.00 mg L− 1 Co used as internal standard. For absorbance measurements at the wavelength integrated absorbance equivalent to 9 pixels, correlations between the ratio of absorbance of Pb to absorbance of Co and the analyte concentration were close to 0.9992. Relative standard deviations of measurements varied from 0.6 to 4% and 1 to 7% (n = 12) without and with IS/LSBC techniques, respectively. Recoveries for Pb spikes were in the 96–104% and 76–180% range with and without IS/LSBC, respectively. The limit of detection improved with IS/LSBC techniques. Accuracy of the proposed method was checked for the determinations of Pb in commercial phosphoric acid samples and results obtained with IS were better than those without IS.  相似文献   

6.
A simple, fast, sensitive and robust analytical method using gas chromatography (GC)-isotope dilution mass spectrometry (MS) was developed and validated for the identification and quantification of 1,4-dichlorobenzene (p-DCB) residues in honey samples. The proposed methodology is based on steam-distillation using a Clevenger-type apparatus followed by gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode employing the isotopically labeled analogue d4-1,4-dichlorobenzene (d4-p-DCB) as internal standard (IS). Validation of the method was performed in two different GC-MS systems, using quadrupole MS (QMS) and ion-trap MS (ITMS) detectors, with no statistically significant differences between two. Recoveries were better than 91% with percent relative standard deviations lower than 12%. The instrumental limits of detection were 1 μg kg−1 in the GC-ITMS system and 0.6 μg kg−1 in the GC-QMS system. The expanded uncertainty was estimated as 17% at the currently accepted “action level” of 10 μg kg−1. The method was applied to the analysis of 310 honey samples in an extensive national monitoring study. A quality control (QC) system applied during the assays has demonstrated a good performance and long-term stability over a period of more than 8 months of continuous operation.  相似文献   

7.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

8.
In this work, the quantification of two mercury species (Hg2+ and CH3Hg+) in fish tissues has been revisited. The originality of our approach relies on the use of Bi3+ as internal standard (IS) and on the modification of typical extraction conditions. The IS (125 μl, 1000 μg l−1 Bi3+) was added to the aliquot of fresh fish tissue (400-500 mg). A high-speed blender and ultrasound-assisted homogenization/extraction was carried out in the presence of perchloric acid (1.5 ml, 0.6 mol l−1), l-cysteine (500 μl, 0.75 mol l−1) and 500 μl toluene:methanol (1:1). Perchloric acid was used for protein denaturation and precipitation, toluene helped to destroy lipid structures potentially sequestering CH3Hg+, l-cysteine was used to form water-soluble complexes with Bi3+, Hg2+ and CH3Hg+. The excess of perchloric acid was eliminated by addition of potassium hydroxide (pH 5 with acetic acid). The obtained extract, was diluted with the mobile phase (1:1) and introduced (20 μl) to the reversed phase HPLC-ICP-MS system. The separation was achieved by isocratic elution (2.5 mmol l−1 cysteine, 12.5 mmol l−1 (NH4)2HPO4, 0.05% triethylamine, pH 7.0:methanol (96:4)) at a flow rate 0.6 ml min−1. Column effluent was on-line introduced to ICP-MS for specific detection of 202Hg, 200Hg and 209Bi. Analytical signal was defined as the ratio between 202Hg/209Bi peak areas. The detection limits evaluated for Hg2+ and CH3Hg+ were 0.8 and 0.7 μg l−1. Recovery of the procedure, calculated as the sum of species concentrations found in the sample with respect to total ICP-MS-determined Hg was 91.9% for king mackerel muscle and 89.5% for red snapper liver. In the standard addition experiments, the recovery results were 98.9% for Hg2+ and 100.6% for CH3Hg+. It should be stressed that the use of Bi3+ as IS enabled to improve analytical performance by compensating for incomplete extraction and for imprecision of sample handling during relatively non-rigorous protocol.  相似文献   

9.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

10.
The use of menadione (MD) as a pre-column reagent for high performance liquid chromatography (HPLC) analysis of aliphatic thiols is proposed. The reaction was carried out for 5 min at room temperature and pH 8.5. The developed method was applied to the N-acetylcysteine (NAC) analysis of alimentary supplements and pharmaceutical formulations. The effect of the complex matrix was evaluated by the study of the thiol derivatization reaction both in standard and in placebo solutions. The yield of NAC-MD adduct was found to be quantitative at a reagent to thiol molar ratio of about 4 in comparison with an authentic specimen of synthesized NAC adduct, which was characterized by 1H NMR, IR and UV. The routine chromatographic separations were performed on a Synergi MAX-RP column using a mobile phase consisting of methanol/triethylammonium (TEA) phosphate buffer (pH 3; 0.05 mol L−1) 70:30 (v/v) at a flow-rate of 0.4 mL min−1. UV-diode array detection was used setting the wavelength at λ = 260 nm. The validation parameters such as linearity, sensitivity, accuracy, precision, selectivity and ruggedness were found to be highly satisfactory. Similar linear responses were observed by standard and placebo solutions (determination coefficient: 0.9996). Limit of detection was about 0.019 μg g−1. Intra-day precision (relative standard deviation, R.S.D.) was ≤0.81% for NAC to internal standard (IS) peak area ratio, ≤0.28% and ≤0.32%, respectively, for NAC and IS retention times (tR), without significant differences between intra- and inter-day data. NAC recovery studies gave good results (100.12%) with R.S.D. = 1.05%.  相似文献   

11.
Petr Chocholouš 《Talanta》2007,72(2):854-858
A novel and fast simultaneous determination of triamcinolone acetonide (TCA) and salicylic acid (SA) in topical pharmaceutical formulations by sequential injection chromatography (SIC) as an alternative to classical high performance liquid chromatography (HPLC) has been developed. A recently introduced Onyx™ monolithic C18 (50 mm × 4.6 mm, Phenomenex®) with 5 mm monolithic precolumn were used for the first time for creating sequential injection chromatography system based on a FIAlab® 3000 with a six-port selection valve and 5.0 mL syringe pump in study. The mobile phase used was acetonitrile/water (35:65, v/v), pH 3.3 adjusted with acetic acid at flow rate 0.9 mL min−1. UV detection provided by fibre-optic DAD detector was set up at 240 nm. Propylparaben was chosen as suitable internal standard (IS). There is only simple pre-adjustment of the sample of topical solution (dilution with mobile phase) so the analysis is not uselessly elongated. Parameters of the method showed good linearity in wide range, correlation coefficient >0.999; system precision (relative standard deviation, R.S.D.) in the range 0.45-1.95% at three different concentration levels, detection limits (3σ) 1.00 μg mL−1 (salicylic acid), 0.66 μg mL−1 (triamcinolone acetonide) and 0.33 μg mL−1 (propylparaben) and recovery from the pharmaceutical preparations in the range 97.50-98.94%. The chromatographic resolution between peaks of compounds was more than 4.5 and analysis time was 5.1 min under the optimal conditions. The advantages of sequential injection chromatography against classical HPLC are discussed and showing that SIC can be a method of option in many cases.  相似文献   

12.
A rapid, sensitive and reliable high performance liquid chromatographic method coupled with tandem mass spectrometry via electrospray ionization (ESI) source (HPLC-MS/MS) has been developed and validated for the determination of anethole trithione (ATT) in human plasma. Diazepam was employed as the internal standard (IS). Sample extracts following liquid-liquid extraction were injected into the HPLC-MS/MS system. The analyte and IS were eluted isocratically on a C18 column, with a mobile phase consisting of methanol and aqueous ammonium acetate solution (5 mM) (80:20, v/v) .The ions were detected by a triple quadrupole mass spectrometric detector in the positive mode. Quantification was performed using selected reaction monitoring (SRM) of the transitions m/z 240.88 → 197.91 and m/z 285.01 → 193.02 for ATT and for the IS, respectively. The analysis time for each run was 5.0 min. The calibration curve fitted well over the concentration range of 0.02-5 ng mL−1, with the regression equation y = 1.1014x + 0.0003631, r = 0.9992. The intra-batch and inter-batch R.S.D.% were less than 15% at all concentration levels within the calibration range. The recoveries were more than 80%. The present method provides a modern, rapid and robust procedure for the pharmacokinetic study of ATT. Some important pharmacokinetic parameters of ATT in healthy Chinese volunteers are also given for the first time.  相似文献   

13.
Fast simultaneous determination of naphazoline nitrate and methylparaben in pharmaceuticals using separation method based on a novel reversed-phase sequential injection chromatography (SIC) is described in this contribution as an alternative to classical HPLC. A Chromolith™ Flash RP-18e (25 mm × 4.6 mm) column (Merck®, Germany) and a FIAlab® 3000 system (USA) with a six-port selection valve and 5.0 ml syringe pump were used for sequential injection chromatographic separations in our study. The mobile phase used was methanol/water (40:65, v/v), pH 5.2 adjusted with triethylamine 0.8 μl ml−1 and acetic acid, at flow rate 0.9 ml min−1. UV detection provided by DAD detector and two wavelengths were simultaneously monitored for increasing sensitivity of determination. Detector was set up at 220 nm for naphazoline nitrate and 256 nm for methylparaben and ethylparaben (IS). There is no necessity to use pre-adjustment of sample of nasal drops (only dilution with mobile phase) so the time of the whole analysis is very short. The validation parameters have shown good results: linearity of determination for both components (naphazoline nitrate and methylparaben), correlation coefficient >0.999; repeatability of determination (R.S.D.) in the range 0.5-1.6% at three different concentration levels, detection limits 0.02 μg ml−1 (naphazoline nitrate) and 0.20 μg ml−1 (methylparaben and ethylparaben), and recovery from the pharmaceutical preparations in the range 100.06-102.55%. The chromatographic resolution between peaks of compounds was more than 4.0 and analysis time was less than 4 min under the optimal conditions. The advantages and drawbacks of SIC against classical HPLC are discussed showing that SIC can be an advantageous alternative in many cases.  相似文献   

14.
A highly sensitive method was developed for the identification and quantification of fatty alcohols in biological tissues. In the presence of pyridine-d0 and triflic anhydride (Tf2O), fatty alcohols were converted into permanently charged N-alkylpyridinium ions. Stable isotope-labeled derivatives were generated by pyridine-d5 and added as internal standard (IS). The mixture was analyzed by liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS). This method was optimized and validated in terms of reaction time, derivatization efficiency, stability, desalting, and ion suppression effect. Besides, fatty alcohols exhibited good linear relationship (r2 > 0.993) over the concentration range of 10 ng mL−1–1 μg mL−1. The limits of detection (LODs) were lowered from previously reported 0.1 ng mL−1 to 0.25 pg mL−1. Precision (RSD% < 15.6%), accuracy (93.0–107.2%), matrix effect, and recovery (in thyroid tissues) were validated as well. Finally, this method was applied for the analysis of ten even carbon-numbered fatty alcohols (C8–C24) in human thyroid carcinoma and para-carcinoma tissues, revealing a significant decrease of fatty alcohols (free and esterified) in thyroid carcinoma tissues (< 0.05).  相似文献   

15.
An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg−1 (beverage: 0.013 g kg−1) were larger than 80%, whereas those for samples spiked at 0.063 g kg−1 (beverage: 0.0063 g kg−1) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg−1 for foods (and 0.0063 g kg−1 for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method.  相似文献   

16.
Mequitazine has been found to be extractable from human plasma samples using MonoTip C18 tips, inside which C18-bonded monolithic silica gel was fixed. Human plasma (0.1 mL) containing mequitazine and cyproheptadine as an internal standard (IS) was mixed with 0.4 mL of distilled water and 25 μL of 1 M potassium phosphate buffer (pH 8.0). After centrifugation of the mixture, the supernatant fraction was extracted to the C18 phase of the tip by 25 repeated aspirating/dispensing cycles using a manual micropipettor. The analytes retained on the C18 phase were then eluted with methanol by five repeated aspirating/dispensing cycles. Without evaporation and reconstitution, the eluate was injected into a gas chromatograph injector and detected by a mass spectrometer with selected ion monitoring in the positive-ion electron impact mode. The separation of mequitazine and the IS from each other and from impurities was generally satisfactory using a DB-1MS capillary column (30 m × 0.32 mm i.d., film thickness 0.25 μm). The recoveries of mequitazine and the IS spiked into plasma were more than 90.0%. The regression equation for mequitazine showed excellent linearity in the range of 0.2-200 ng 0.1 mL−1, and the detection limit was 0.05 ng 0.1 mL−1of plasma. The intra-day and inter-day coefficients of variation for mequitazine in human plasma were not greater than 8.16 and 9.24%, respectively. Accuracy for the drug was in the range of 90.0-97.4%. The data obtained from determination of mequitazine in human plasma after oral administration of the drug are also presented.  相似文献   

17.
Two highly sensitive and selective methods based on gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode have been developed for the quantification of 2,6-dichlorophenol (2,6-DCP), a sex pheromone of the tick females of Anocentor nitens. Standard addition method and calibration curve techniques using 5-bromine-4-hydroxy-3-methoxybenzaldehyde (5-BrV) as internal standard (IS) afforded detection limit of 0.1 ng ml−1. The calibration curve was linear over the concentration range from 0.5 to 500 ng ml−1 for 2,6-DCP. Results show that the concentration range of sex pheromone in the extracts samples was 1.08-10.35 ng ml−1. The methods developed provided reliable procedures to determine amounts of 2,6-DCP present in ticks.  相似文献   

18.
A method for determination of nine brominated phenols as environmental risk compounds was developed by on-line coupled capillary isotachophoresis and capillary zone electrophoresis (ITP–CZE). For ITP step, 1 × 10−2 mol L−1 hydrochloric acid with 3 × 10−2 mol L−1 ammediol pH 9.1 was used as the leading electrolyte, and 3 × 10−2 mol L−1 β-alanine with 2 × 10−2 mol L−1 sodium hydroxide pH 10.05 was used as the terminating electrolyte. As the background electrolyte for CZE separation, 2.5 × 10−2 mol L−1 β-alanine with 2.5 × 10−2 mol L−1 lysine pH 9.6 was used. All electrolytes contained 0.05% or 0.1% (m/v) hydroxyethylcellulose to suppress the electroosmotic flow. UV detection at wavelength 220 nm was used. Detection limits in order of tens of nmol L−1 were achieved. Good repeatability of migration times (less than 0.33% RSD) and good repeatability of peak areas (less than 7.19% RSD) at concentration level 5 × 10−8 mol L−1 were observed. Developed ITP–CZE method was applied to determination of brominated phenols in spiked tap and river water samples.  相似文献   

19.
Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 × 10−5-1.0 × 10−3 mol L−1) in 0.1 mol L−1 NaOH solution. High sensitivity (130 mA mol−1 cm2) and a low detection limit (9.0 × 10−7 mol L−1) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 × 10−4 mol L−1 NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method.  相似文献   

20.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号