首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu Y  Yang Z 《Talanta》2004,63(3):521-526
In this paper, a low cost chemiluminescence detector with a photodiode instead of photo-multiplier tube (PMT) was developed for environmental monitoring of water quality. Based on the chemiluminescent reaction of luminol-H2O2-Cr3+ system, light emission caused by luminol-H2O2-Cr3+ system was detected by the photodiode, and its intensity caused by the appearance of Cr3+ after samples digestion was proportional to the chemical oxygen demand (COD). Effects for COD determining such as pH, concentrations, interference, and digestion procedures were investigated. The experimental results show that this suggested method uses an instrument that is simpler and cheaper than the previous ones used for the same purpose. The data obtained by the present method were fairly in good agreement with those obtained by the standard reflux titrimetric method. It has been applied to determine real samples with satisfactory results.  相似文献   

2.
Li B  Zhang Z  Wang J  Xu C 《Talanta》2003,61(5):651-658
A novel chemiluminescence (CL) system for automatic determination of chemical oxygen demand (COD) combined with flow injection analysis is proposed in this paper. In this system, potassium permanganate is reduced to Mn2+ which is first adsorbed on a strongly acid cation-exchange resin mini-column to be concentrated during chemical oxidation of the organic compounds at room temperature, while the excessive MnO4 passes through the mini-column to be waste, then the concentrated Mn2+ is eluted reversely and measured by the luminol-H2O2 CL system. The calibration graph is linear in the range of 4-4000 mg l−1 and the detection limit is 2 mg l−1. A complete analysis could be performed in 1.5 min including washing and sampling, giving a throughout of about 40 h−1. The relative standard deviation was 4.4% for 10 mg l−1 COD (n=11), 4.8% for 100 mg l−1 COD (n=11). This CL flow system for determination of COD is very simple, rapid and suitable for automatic and continuous analysis. The presented system has been applied successfully to the determination of COD of water samples.  相似文献   

3.
A novel on-line method based on the combination of UV photolysis and chemiluminescence detection was established and experimentally validated for the determination of chemical oxygen demand (COD). A quantitative amount of free radicals can be produced by analytes in the UV irradiation process. By utilizing the phenomenon that luminol can be oxidized by the free radicals to produce luminescence, COD was successfully determined indirectly. This new approach overcomes many problems associated with the conventional COD determination techniques such as long analysis time, tedious operations, consumption of expressive and toxic reagents, production of secondary toxic waste and poor reproducibility. The method was successfully applied to the determination of COD in synthetic samples, certified reference samples and real samples of river water and lake water. A limit of detection of 0.08 mg/L COD with a linear dynamic range of 0.2-20 mg/L was achieved under the optimum experimental conditions. The proposed method is a unique method that is environmentally friendly (without using any strong oxidizing reagent and any catalysts such as titanium dioxide), rapid (with only 5-10 min required for each sample), sensitive (with the lowest limit of detection for COD so far), simple (mainly with a photo-reactor and a chemiluminescence detector) and automated (using an intermittent flow system).  相似文献   

4.
The chemical oxygen demand (COD) of solutions containing various organic compounds is calculated from the net faradaic charge (Qnet) estimated for the total electrolytic oxidation of CrIII generated during oxidative degradation of the organic compounds in acidic media containing excess CrVI. Values of Qnet for conversion of CrIII to CrVI are estimated from the linearized chronoamperometric data plotted as In {itat, t} vs. t. This procedure is preferred over determinations of Qnet from the total integrals of itot over the entire electrolysis period because of large errors that can result from uncertainty in the background current (ibkg) for t → ∞. The proposed coulometric procedure offers the benefit that reagent solutions can be reused, thereby minimizing the need for disposal of wastes containing toxic CrVI. This procedure was applied in a single digest solution for consecutive determinations of COD. Average COD values for potassium acid phthalate and glucose were 103.8% (s - 6.0, N - 10) and 100.2% (s - 4.2, N - 11), respectively, based on the theoretical degradation to CO2. In comparison for these same samples, an EPA approved method, based on colorimetric determination of CrIII, gave COD values of 101.4% (S - 1.4, N - 5) and 100.1% (s - 1.4, N - 5) of the theoretical. Statistical tests indicate no significant difference in the COD values determined for these compounds using the coulometric and EPA methods.  相似文献   

5.
Zhu L  Chen Y  Wu Y  Li X  Tang H 《Analytica chimica acta》2006,571(2):242-247
A new method for chemical oxygen demand (COD) determination has been developed, based on photocatalytic oxidative degradation by using a fluorinated-TiO2-KMnO4 system. In such a system, a linear correlation is observed between the amount of oxidizable dissolved organic matter and the amount of MnO4 consumed by the coupled reduction process. Thus, the COD determination is transformed to a simple and direct determination of the deletion of MnO4. The surface fluorination of TiO2 nanoparticles can enhance the rate of photocatalytic oxidation of organic matter and the rate of coupled photocatalytic reduction of MnO4. This makes the method be rapid, environment friendly and easy for operation. Under optimized conditions, this method can respond linearly to COD of potassium hydrogen phthalate (KHP) in the range of 0.1-280 mg L−1, with a detection limit of 0.02 mg L−1 COD. The COD in samples of tap water, lake water and paper industry sewage has been determined satisfactorily by using this method.  相似文献   

6.
A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L−1, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h−1. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.  相似文献   

7.
 The measurement uncertainty of the result of chemical oxygen demand determination in wastewater was evaluated. The major sources of uncertainty of the result of measurement were identified as the purity of reagents, volumetric operations, gravimetric operations, bias, and the repeatability of the method. Identification and evaluation of uncertainty sources was followed by combined uncertainty calculations. The combined uncertainty was compared to the experimentally determined variation and good agreement was found, indicating that the major uncertainty sources had been identified. The results show that the major sources of uncertainty arose from repeatability at high concentration level and volumetric steps at low concentration level, thus revealing the target operations for reducing the measurement uncertainty of this determination. Received: 5 August 2002 Accepted: 5 November 2002 Acknowledgements This research was supported by the Ministry of Education, Science and Sport of the Republic of Slovenia (Project Z2–3530). Presented at CERMM-3, Central European Reference Materials and Measurements Conference: The function of reference materials in the measurement process, May 30–June 1, 2002, Rogaška Slatina, Slovenia Correspondence to A. Drolc  相似文献   

8.
A new chemiluminescence biochemical oxygen demand (BODCL) determining method was studied by employing redox reaction between quinone and Baker's yeast. The measurement was carried out by utilizing luminol chemiluminescence (CL) reaction catalyzed by ferricyanide with oxidized quinone of menadione, and Saccharomyces cerevisiae using a batch-type luminometer. In this study, dimethyl sulfoxide was used as a solvent for menadione. After optimization of the measuring conditions, the CL response to hydrogen peroxide in the incubation mixture had a linear response between 0.1 and 100 μM H2O2 (r2 = 0.9999, 8 points, n = 3, average of relative standard deviation; R.S.D.av = 4.22%). Next, a practical relationship between the BODCL response and the glucose glutamic acid concentration was obtained over a range of 11-220 mg O2 L−1 (6 points, n = 3, R.S.D.av 3.71%) with a detection limit of 5.5 mg O2 L−1 when using a reaction mixture and incubating for only 5 min. Subsequently, the characterization of this method was studied. First, the BODCL responses to 16 pure organic substances were examined. Second, the influences of chloride ions, artificial seawater, and heavy metal ions on the BODCL response were investigated. Real sample measurements using river water were performed. Finally, BODCL responses were obtained for at least 8 days when the S. cerevisiae suspension was stored at 4 °C (response reduction, 69.9%; R.S.D. for 5 testing days, 18.7%). BODCL responses after 8 days and 24 days were decreased to 69.9% and 35.8%, respectively, from their original values (R.S.D. for 8 days involving 5 testing days, 18.7%).  相似文献   

9.
The present paper describes a new flow injection method for the determination of Chemical Oxygen Demand (COD). This method consists of a first digestion step, where the sample is heated by microwave radiation, a second one where an anionic exchange resin retains the Cr(VI) that has not been reduced by the organic matter of the sample and a third one where Cr(VI), after being eluted, is determined by flame atomic absorption spectrometry. The microwave power applied, the sulphuric acid concentration, the liquid flow in the digestion step and the sample volume were the variables studied. The recovery and precision obtained with this method are similar to those obtained using a standard semi-micro method, whereas the throughput is much higher (up to 50 determinations per hour). As regards sensitivity, by changing the sample loop volume and the concentration of dichromate, one can analyze samples with Chemical Oxygen Demand values between 25 and 5000 mg/l. The limit of detection is about 7 mg/l COD. An interesting feature of the new method, which is not shared by most other flow injection methods of Chemical Oxygen Demand determination, is that there is no matrix effect in the determination step.  相似文献   

10.
In the present paper, the TiO2 nanorod arrays electrode was developed as a sensor for the determination of chemical oxygen demand (COD) based on a photoelectrochemical degradation principle. Effects of common parameters, such as applied potential, light intensity and pH on its analytical performance were investigated. Under the optimized conditions, the nanorod arrays electrode was successfully applied in the COD determination for both synthetic and real samples. In the COD determination, the proposed method can achieve a practical detection limit of 18.3 mg L−1 and a linear range of 20–280 mg L−1. Furthermore, the results obtained by the proposed method were well correlated with those obtained using the conventional (i.e., dichromate) COD determination method. The main advantages of this COD determination method were its simplicity, long term stability and environmental friendly (corrosive and toxic reagents not consumed). This work would open a new application area (COD determination) of the TiO2 nanorod arrays.  相似文献   

11.
This paper demonstrates the use of a microwave heating system, employed in the chemical digestion step, for the determination of chemical oxygen demand in wastewater. The results are first compared with those provided by standard methods using reference substances. The problems arising from abrupt heating of the sample and the potential thermal decomposition of potassium dichromate are examined. Two different approaches to sample digestion involving a gradually increasing irradiation time were tested. First, a constant power strategy is applied, and the second proposes a constant temperature approach by using a temperature control system.By optimising the operating conditions, the digestion time was reduced to 8-60 times with respect to the standard method. The reference digestion time is 5 min. In especially difficult digestions, the proposed approach provides a substantially improved degradation with respect to conventional procedures. The procedure was applied to wastewater from various industries and found to ensure thorough digestion of all samples and to provide favourable results in all cases tested.  相似文献   

12.
对高氯废水化学需氧量分析方法进行归纳和综述。常用的高氯废水化学需氧量分析方法有氯气校正容量法、降氯密闭消解分光光度法以及高温氧化总有机碳系数换算法等。其中氯气校正容量法操控要求较高,分析耗时较长,不适用于大批量样品同步分析;降氯密闭消解分光光度法灵敏度高,但在降氯过程中增加了重金属盐硫酸汞的用量,分析成本较高,易产生二次污染,且对样品的均质性要求较高;高温氧化总有机碳系数换算法操作便捷、抗干扰能力强,但是换算系数易随不同来源、不同组分的样品发生波动,数据可比性需要通过实验验证。经过梳理归纳,明确各种分析方法的特点和适用范围,为研究人员选择合适的分析方法或进一步开展相关的方法研究提供参考。  相似文献   

13.
A simple and convenient chemiluminescence (CL) method for the determination of melatonin is reported. It is based on the observation that melatonin can greatly enhance the ultra-weak CL between H2O2 and acetonitrile in alkaline solution. Light emission is intense and long-lived, and even with a simple setup, a high sensitivity could be achieved. The log-log linear range was 250 nM-250 μM with a 3σ detection limit of 100 nM. Singlet oxygen is suggested to be produced by the reaction between H2O2 and acetonitrile and is responsible for the CL of melatonin. As a preliminary application, this simple method has been successfully applied into the determination of melatonin in health-foods.  相似文献   

14.
建立无汞分光光度法快速测定含氯废水的化学需氧量。氯离子在测定化学需氧量反应中会增大重铬酸钾的消耗量,进而影响测定的准确性。传统的化学需氧量测定需要使用硫酸汞掩蔽氯化物。通过添加过量硫酸银以减少汞的使用,建立化学需氧量的无汞测定法。研究表明添加硫酸银含量1.03%的Ag2SO4-H2SO4试剂可以掩蔽500 mg/L及以下浓度氯离子的干扰。运用传统的测定方法和无汞测定法对理论化学需氧量为100 mg/L的邻苯二甲酸氢钾溶液进行测定,无汞测定法测定值略高于传统方法测定值。在氯离子浓度低于500 mg/L时,无汞方法测定值的准确度优于传统方法。另外,化学需氧量无汞测定法将化学药品的单位样本使用成本从0.61元降至0.47元。无汞分光光度法适用于含氯废水化学需氧量的快速测定。  相似文献   

15.
In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV–Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190–350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.  相似文献   

16.
Sponge-like material was utilized as novel chromatographic media for high throughput analyses. The pore size of the sponge-like material was several dozen micrometer, and was named spongy monolith because it consists of continuous structured copolymers, which was made of poly(ethylene-co-vinyl acetate), such as monolithic materials including silica monoliths and organic polymer monoliths. The spongy monolith was packed into a stainless steel column (100 mm × 4.6 mm I.D.) and evaluated in liquid chromatography (LC) with an on-line column-switching LC concentration system. The results indicate that the packed column could be used with high flow rates and low back pressure (9.0 mL/min at 0.5 MPa). Furthermore, bisphenol A was quantitatively recovered by on-line column-switching LC concentration with the spongy monolithic column. Additionally, the adsorption capacity and physical strength of the media was enhanced via chemical modification of spongy monoliths using glycerol dimethacrylate. The results compared with original spongy monolith demonstrated that a higher adsorption capacity was achieved on a shorter column, and a stable low back pressure was obtained at high throughput elution even with a longer column.  相似文献   

17.
流动注射化学发光法测定盐酸羟苄唑   总被引:1,自引:0,他引:1  
基于在碱性条件下盐酸羟苄唑能够与鲁米诺产生化学发光的现象,建立了流动注射化学发光测定盐酸羟苄唑的新方法。盐酸羟苄唑的浓度在8×10-7~1×10-4mol/L范围内与化学发光强度呈良好的线性关系,方法的(3σ)检出限为3×10-7mol/L,对1×10-5mol/L的盐酸羟苄唑连续11次测定的相对标准偏差为1.7%,回收率为96%~103%。已用于滴眼液中盐酸羟苄唑的测定。  相似文献   

18.
Li J  Li L  Zheng L  Xian Y  Jin L 《Talanta》2006,68(3):765-770
A COD measurement by a photocatalytic oxidation method using nano-TiO2 film was investigated. K2Cr2O7 was added into the solution to enhance the efficiency of photocatalytic degradation, and simultaneously K2Cr2O7 was reduced to Cr(III) by photogenerated electrons, which were adsorbed on the surface of TiO2. The measuring principle was based on direct determination of Cr(III) concentration which was proportional to the COD value. Under the optimized experiment condition, the application range was 20-500 mg l−1, and the detection limit was 20 mg l−1. The immobilization of photocatalyst on the supports could not only solve the problem of low recovery of the catalyst and hard separation from the solution, but also overcome its shortcoming of poor stability. Applied this method to the determination of real samples, it was found to be rapid and environmentally friendly. Additionally, the method proposed above for determination of COD was in excellent correspondence with values obtained by using the conventional method.  相似文献   

19.
In this paper, photoelectro-synergistic catalysis oxidation of organics in the water on Ti/TiO2/PbO2 electrode was investigated. The prepared TiO2 film was investigated with Atomic force micrograph (AFM). Furthermore, the results were compared with those obtained from electrocatalysis (EC) and electro-assisted photocatalysis (PC). The method proposed employed photoelectro-synergistic catalysis (PEC), together with flow injection analysis, to determine the chemical oxygen demand (COD) values. It was shown that the method of photoelectro-synergistic catalysis had lower detection limit (15.0 mg l−1) and wider linear range (30.0–2500.0 mg l−1) than the methods of electro-assisted photocatalysis and electrocatalysis. The results obtained by the proposed method and conventional one were compared by carrying out the experiment on 20 wastewater samples and also agreed well by high correlation (R = 0.9912).  相似文献   

20.
Ultrasound-assisted method for determination of chemical oxygen demand   总被引:1,自引:0,他引:1  
A method for determination chemical oxygen demand (COD) assisted by use of ultrasound has been successfully evaluated for the first time. The method uses instrumentation simpler and cheaper and, in some instances, safer than that used by previous methods for the same purpose. The new device used for sonication is an all-glass cylindrical sonotrode that can be introduced directly into the reaction mixture. Use of this device enables more efficient interaction between sample and ultrasonic energy. The optimized experimental conditions are high ultrasonic power (55% amplitude, 0.9-second pulses each second), high sulfuric acid concentration (>60%), and a sonication time of 2 min. Under these conditions the method has limitations similar to those of the official COD method with regard to the type of organic compound. It works adequately with easily oxidized organic matter (potassium hydrogen phthalate and dextrose) and other organic compounds difficult to oxidize by conventional methods (e.g. phenol and acetic acid) but the COD values obtained with volatile compounds and difficult organic matter are poor. Chloride is tolerated up to a concentration of 7000 mg L(-1) without any masking agent. Gasification of the sample is recommended to improve results; use of air and argon resulted in no significant differences - bubbling with air during sonication resulted in COD values for certified materials and real wastewater samples statistically identical with the certified COD values and those obtained by the classic (open reflux) method. The use of ultrasound energy for COD determination thus seems to be an interesting and promising alternative to conventional oxidation methods used for the same purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号