首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
New transition metal complexes of Co(II), Cu(II), Ni(II), and Fe(III) of the ligands 6,6′-(1E,1′E)-(4,5-dimethyl-1,2-phenylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L1 and 6,6’-(1E,1′E)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L2 have been prepared and characterized using physio-chemical and spectroscopic methods. The results obtained for the complexes indicated that the geometries of the metal centres are either square planar or octahedral. Cyclopropanation reactions of unactivated olefins by ethyldiazoacetate (EDA) in the presence of [L1Cu]·H2O, [L2Cu]·2H2O and [L2*Co]·2H2O as catalysts were examined. The results showed that only [L2*Co]·2H2O can act as a catalyst for the cyclopropanation reaction of unactivated olefins with very high selectivity (up to 99% based on EDA).  相似文献   

2.
Comparative studies of neodymium (III)-selective PVC membrane sensors   总被引:1,自引:0,他引:1  
Sensors based on two neutral ionophores, N,N′-bis((1H-pyrrol-2-yl)methylene)cyclohexane-1,2-diamine (L1) and 3,3′-(cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(5-hydroxymethyl)pyridine-2-ol) (L2) are described for quantification of neodymium (III). Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), tri-n-butyl phosphates (TBP), dioctylpthalate (DOP) and chloronapthalen (CN) and anion excluder, sodiumtetraphenylborate (NaTPB) has been studied. The membrane composition of PVC:o-NPOE:ionophore (L1):NaTPB (w/w; mg) of 150:300:5:5 exhibited best performance. The sensor with ionophore (L1) exhibits significantly enhanced selectivity towards neodymium (III) in the concentration range 5.0 × 10−7 to 1.0 × 10−2 M with a detection limit of 1.0 × 10−7 M and a Nernstian compliance (19.8 ± 0.3 mV decade−1 of activity) within pH range 4.0-8.0. The response time of sensor was found as 10 s. The influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. The fast and stable response, good reproducibility and long-term stability of the sensor are observed. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for neodymium. The proposed electrode shows fairly good discrimination of neodymium (III) from other cations. The application of prepared sensor has been demonstrated in the determination of neodymium (III) in spiked water samples.  相似文献   

3.
《Comptes Rendus Chimie》2017,20(2):164-168
The deleterious effects of refractory polyaromatic hydrocarbons found in fuels such as organo-sulfur compounds are such that they emit SOx to the environment when combusted, thereby reducing air quality. Herein, oxidative desulfurization (ODS) which is a complementary step to hydrodesulfurization (HDS) was carried out in an attempt to eliminate sulfur compounds in fuels. Refractory organosulfur compounds were oxidized using tert-butyl hydroperoxide as an oxidant and a poly[VO(allylSB-co-EGDMA)], (vanadium(IV) functionalized polymer of 6,6′-(1E,1′E)-(1,2-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-allylphenol) crosslinked with ethyleneglycol dimethacrylate) as a catalyst to convert sulfur compounds to polar sulfones. Some of the organosulfones were adsorbed via the use of molecularly imprinted polybenzimidazole nanofibers. The sulfur in heavy fuel oil after the oxidation/adsorption method fell below 8900 ± 200 ppmw S from the initial value of 17 920 ± 100 ppmw S.  相似文献   

4.
A potentiometric sensor based on the Schiff base 2,2′-(1E,1′E)-(1,1′-binaphthyl-2,2′-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol was synthesized and tested as an ionophore PVC-based membrane sensor selective towards silver ions (Ag+). Potentiometric testing demonstrated the high affinity of this receptor to silver ions. Seven membranes were fabricated with different compositions, with best performance shown by that with an ionophore composition (w/w) of 1.0?mg, PVC 33.0?mg, 2-nitrophenyl octyl ether 66?mg, and potassium tetrakis(p-chlorophenyl)borate 50?mol% in 1.0?mL tetrahydrofuran. The sensor worked well over a wide range of concentrations (1.0?×?10?2 to 1.0?×?10?6?M Ag+) at pH?6, showing a slope of 60.99?mV/dec with rapid response times of less than 3?s. The sensor also showed good selectivity towards Ag+ in the presence of interfering cations, with the highest selectivity coefficient observed for Hg2+ (2.7). A low detection limit of 3.4?×?10?7?M Ag+ was established.  相似文献   

5.
Chiral Schiff-base ligand L was synthesized through six steps in good overall yield from readily available 2-tert-butylphenol and was used to construct one chiral porous metal-metallosalen framework,[Zn5(μ3-OH)2(ZnL)4(H2O)2]·18H2O(1,L=5′,5″-(1E,1′E)-(1R,2R)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(3′-tert-butyl-4′-hydroxybiphenyl-4-carboxylic acid),under mild reaction conditions.1 was characterized by IR,TGA,CD,UV,PL,single-crystal and powder X-ray crystallography.The structure of 1 displays a 3-fold interpenetrating 3D framework with 1D channel of 1.14 nm×0.58nm and imparts unique Zn(salen)units on the surface of the pore,in which(ZnL)2dimer acts as multi-functionlized metalloligand.1 is thermally robust with network decomposition temperature of 400oC and it also exhibits strong photoluminescence in the visible region.  相似文献   

6.
The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N′-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S1) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S2) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S1) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M Cd2+ with limit of detection 5.0 × 10−8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

7.
Praseodymium ion selective polyvinyl chloride (PVC) membrane sensors, based on two new Schiff's bases 1,3-diphenylpropane-1,3-diylidenebis(azan-1-ylidene)diphenol (M1) and N,N′-bis(pyridoxylideneiminato) ethylene (M2) have been developed and studied. The sensor having membrane composition of PVC: o-NPOE: ionophore (M1): NaTPB (w/w; mg) of 150: 300: 8: 5 showed best performances in comparison to M2 based membranes. The sensor based on (M1) exhibits the working concentration range 1.0 × 10−8 to 1.0 × 10−2 M with a detection limit of 5.0 × 10−9 M and a Nernstian slope 20.0 ± 0.3 mV decade−1 of activity. It exhibited a quick response time as <8 s and its potential responses were pH independent across the range of 3.5-8.5.The influence of the membrane composition and possible interfering ions have also been investigated on the response properties of the electrode. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for praseodymium(III) ions over wide variety of other cations. To asses its analytical applicability the prepared sensor was successfully applied for determination of praseodymium(III) in spiked water samples.  相似文献   

8.
Boron complexes BL1 and BL2 were prepared from O-donor ligands, 2,2′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methane-1-yl-1-ylidene)diphenol (L1) and 2,2′-(propane-1,3-diylbis(azan-1-yl-1-ylidene))bis(methane-1-yl-1-ylidene)diphenol (L2). The complexes were fully characterized by 1H and 13C NMR, LC-MS/MS, TGA/DTA, UV-Vis, elemental analysis, SEM, and FTIR. The transfer hydrogenation of acetophenone derivatives was investigated by the boron complexes in the presence of isoPrOH, as the hydrogen source, under basic condition with NaOH. The results showed that the boron complexes were promising catalytic precursors for transfer hydrogenation of aromatic ketones in 0.1 M isoPrOH solution (up to 99%). Both steric and electronic factors of this class of molecules had a significant impact on the catalytic properties.  相似文献   

9.
A novel potentiometric zirconium - PVC matrix membrane sensor incorporating bis(diphenylphosphino) ferrocene as an electroactive material and tris(2-ethylhexyl)phosphate as solvent mediator is described. In mixed acetate buffer solution of pH 4.8, the sensor displays a rapid and linear response for zirconium ion over the concentration range 1.0 × 10−1 to 1.0 × 10−7 mol L−1 with a good slope of 59.7 ± 0.3 mV per decade and detection limit 1.8 × 10−8 mol L−1. The best performance was obtained with membrane composition 33% PVC, 65% TEHP, 1% NaTPB and 1% ionophore. The proposed electrode revealed excellent selectivity for zirconium ion over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.15-7.8. The electrode was applied for at least 1 month without any considerable divergence in the potential responses. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of zirconium ions with sodium fluoride and in determination of zirconium ion in some alloy, tape and waste water samples.  相似文献   

10.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

11.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

12.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

13.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

14.
A solution-phase parallel method for the synthesis of 2-quinoxalinol salen ligands was designed and optimized. The synthesis begins with commercially available 1,5-difluoro-2, 4-dinitrobenzene (DFDNB) and employs a sequence of five straightforward and high-yielding reaction steps. Simple laboratory techniques with low sensitivity to water or air for solution-phase parallel reactions were coupled with convenient workup and purification procedures to give high-purity and yield a small ligand library of 20 compounds. The final step, a Schiff-base condensation of an aldehyde with the diaminoquinoxaline results in a new category of ligands for metal coordination or of potential bioactivity, based on the skeleton 2,2'-(1E,1'E)-(quinoxaline-6,7-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol. The approach described here is easily adaptable for parallel synthesis of a larger library.  相似文献   

15.
The new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic octadentate species with the involvement of the nitrogen atoms of the pyridine groups in coordination for all complexes. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) complexes of general formulae [Cr2III(L)Cl2]Cl2, [Ni2II(L)(H2O)2]Cl2 and [M2(L)Cl2] and five co-ordinate Zn(II) complex of general formula [Zn2II(L)]Cl2.  相似文献   

16.
The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L1) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L2) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L1: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb3+ ions with limits of detection of 3.4 × 10−8 mol L−1 for PME and 5.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb3+ ions in tap water and various binary mixtures with quantitative results.  相似文献   

17.
A colorimetric anion sensor 2,2′-(1E,1′E)-(thiophene-2,5-diylbis(methan-1-yl-1-ylidene)) was synthesized and characterized by various spectroscopic techniques. Anion binding studies were carried out using UV-visible spectrophotometric titrations and emission spectra studies, revealed that the receptor exhibits selective recognition toward Fover other anions. The selectivity for Famong the halides is attributed mainly to the hydrogen-bond interaction of the receptor with F. Receptor 1 showed color change from fluorescent green to orange in the presence of tetrabutylammonium fluoride with 1:1 stoichiometry. Receptor 1 exhibits remarkably enhanced fluorescence intensity.  相似文献   

18.
The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L1) and N,N′-bis(acetoacetanilide)-triethylenetetraammine (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L1:PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 × 10−8 to 1.0 × 10−1 M Cr3+ with limit of detection 5.6 × 10−8 M. The proposed sensor manifest advantages of relatively fast response (10 s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.  相似文献   

19.
A hydrogen ion-selective poly(vinyl chloride) (PVC) membrane electrode was developed using 2-(4-methoxy phenyl) 6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0] hex-3-ene as ionophore. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and the amount of additive on the potential response of pH sensor were investigated. This H+-selective membrane electrode gave a linear response over the pH range 0-4 (10−4 to 1 mol L−1 HCl) with slope of 57.4 ± 0.3 mV pH−1 and limit of detection 6.3 × 10−5 mol L−1 at 20 °C. Also, hydrofluoric acid did not influence the surface of this electrode and thus it was maintained without showing any changes in potentials after being used in a hydrofluoric acid solution. The equilibrium water content of the electrode was determined in the presence of two different plasticizers as membrane solvent. The alkaline cation binding affinity of ionophore was very low that prove these cations do not have specific interaction with this ionophore. The electrode had fairly low electrical resistance, good potential stability and reproducibility. It has a rapid potential response to changes of pH (10 s), easily used in a single channel wall-jet flow injection system with good reproducibility (RSD% = 1.67%) and high reversibility. It was used as indicator electrode in potentiometric determination of pH in real samples.  相似文献   

20.
Self-assembled monolayers of a nickel(II) complex and 3-mercaptopropionic acid on a gold electrode were obtained for determination of catechin by square wave voltammetry. The complex [NiIIL] with L = [N-(methyl)-N′-(2-pyridylmethyl)-N,N′-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-1,3-propanediamine[nickel(II)] was synthesized and characterized by 1H NMR, IR, and electronic spectroscopies and electrochemical methods. The optimized conditions obtained for the electrodes were 0.1 mol L−1 phosphate buffer solution (pH 7.0), frequency of 80.0 Hz, pulse amplitude of 60.0 mV and scan increment of 10.0 mV. Under these optimum conditions, the resultant peak current on square wave voltammograms increases linearly with the concentration of catechin in the range of 3.31 × 10−6 to 2.53 × 10−5 mol L−1 with detection limits of 8.26 × 10−7 mol L−1. The relative standard deviation for a solution containing 1.61 × 10−5 mol L−1 catechin solution was 2.45% for eight successive assays. The lifetime of the Ni(II) complex-SAM-Au electrode was investigated through testing every day over 4 weeks. The results showed apparent loss of activity after 20 days. The results obtained for catechin in green tea samples using the proposed sensor and those obtained by electrophoresis are in agreement at the 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号