首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical biosensors are particularly suitable for miniaturization and integration in microfluidic devices. Applications include the detection of whole cells, cell components, proteins, and small molecules to address tasks in the fields of diagnostics and food and environmental control. Microfluidic setups range from simple channels for sample transport to channels with integrated sensing electrodes to highly sophisticated platforms with additional elements for sample preparation. The design of the microfluidics depends on both the type of detection and on the application and sample material. This review summarizes recent work on electrochemical biosensors with integrated microfluidics with the focus on developments for real sample applications, particularly those including measurements with real sample media.  相似文献   

2.
Microdroplets in microfluidics offer a great number of opportunities in chemical and biological research. They provide a compartment in which species or reactions can be isolated, they are monodisperse and therefore suitable for quantitative studies, they offer the possibility to work with extremely small volumes, single cells, or single molecules, and are suitable for high‐throughput experiments. The aim of this Review is to show the importance of these features in enabling new experiments in biology and chemistry. The recent advances in device fabrication are highlighted as are the remaining technological challenges. Examples are presented to show how compartmentalization, monodispersity, single‐molecule sensitivity, and high throughput have been exploited in experiments that would have been extremely difficult outside the microfluidics platform.  相似文献   

3.
Single-cell metabolomics is an emerging field that addresses fundamental biological questions and allows one to observe metabolic phenomena in heterogeneous populations of single cells. In this review, we assess the suitability of different detection techniques and present considerations on sample preparation for single-cell metabolomics. Although targeted analysis of single cells can readily be conducted using fluorescent probes and optical instruments (microscopes, fluorescence detectors), a comprehensive metabolomic approach requires a powerful label-free method, such as mass spectrometry (MS). Mass-spectrometric techniques applied to study small molecules in single cells include electrospray MS, matrix-assisted laser desorption/ionization MS, and secondary ion MS. Sample preparation is an important aspect to be taken into account during further development of methods for single-cell metabolomics.  相似文献   

4.
Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.  相似文献   

5.
刘虎威  白玉 《色谱》2017,35(1):86-90
脂质组学的研究属于生命科学的范畴,与人类的健康密切相关。目前,脂质组学已成为代谢组学最重要的分支之一,且是一个非常活跃的研究领域,尤其在研究疾病方面的重要性已经引起了科学界的广泛关注。该文简要介绍了脂质组学的研究内容,重点评述了脂质组学分析方法,包括样品处理、轮廓分析、目标分析、成像分析以及数据处理。最后提出了脂质组学分析技术和方法的展望。  相似文献   

6.
The status of capillary electrophoresis (CE) in the analysis of small molecules is reviewed and summarised with the illustrative use of recent literature references. Examples are cited in this review which demonstrate that CE is now a recognised and established technique in many industries, law courts and government regulatory agencies. Each of the principal areas of CE application in small molecule analysis are covered in sections which highlight the recent developments and possibilities within that area. Application areas include the analysis of pharmaceuticals, agrochemicals, chiral separations, and forensics is covered. This is an update to a previous review article [J. Chromatogr. A 856 (1999) 443] and covers papers published between 1999 and 2002. Technical developments and improvements, such as the advent of capillary array instrumentation for increased sample throughput, and improved detection options are described. Overall it is concluded that CE has become a recognised and established technique in many areas and is still within a period of development of both instrumentation and application which will continue to expand usage.  相似文献   

7.
Dried blood spot samples are simple to prepare and transport, enabling safe and accessible diagnostics, both locally and globally. We review dried blood spot samples for clinical analysis, focusing on liquid chromatography-mass spectrometry as a versatile measurement tool for these samples. Dried blood spot samples can provide information for, for example, metabolomics, xenobiotic analysis, and proteomics. Targeted analyses of small molecules are the main application of dried blood spot samples and liquid chromatography-mass spectrometry, but emerging applications include untargeted metabolomics and proteomics. Applications are highly varied, including analyses related to newborn screening, diagnostics and monitoring of disease progression and treatment effects of virtually any disease, as well as studies into the physiology and effects of diet, exercise, xenobiotics, and doping. A range of dried blood spot products and methods are available, and applied liquid chromatography-mass spectrometry instrumentation is varied with regard to liquid chromatography column formats and selectivity. In addition, novel approaches such as on-paper sample preparation (e.g., selective trapping of analytes with paper-immobilized antibodies) are described. We focus on research papers published in the last 5 years.  相似文献   

8.
Large part of the current research in biology, medicine, and biotechnology depends on the analysis of DNA (genomics), proteins (proteomics), or metabolites (metabolomics). The advances in biotechnology also command development of adequate analytical instrumentation capable to analyze minute amounts of samples. The analysis of the content of single cells may serve as an example of ultimate analytical applications. Most of the separation techniques have been developed in the last three decades and alternative approaches are being investigated. At present, the main protocols for analyses of complex mixtures include 2-DE (IEF) followed by electrophoresis in SDS polyacrylamide gel (SDS-PAGE) and chromatographic techniques. Information-rich techniques such as MS and NMR are essential for the identification and structure analysis of the analyzed compounds. High resolution separation of the individual sample components is often a prerequisite for success. High resolution proteomic analysis in the majority of laboratories still relies on the time consuming and laborious offline methods. This review highlights some of the important aspects of 2-D separations including microfluidics.  相似文献   

9.
The repertoire of small-molecular-weight substances present in cells, tissue and body fluids are known as the metabolites. The global analysis of metabolites, such as by high-resolution 1H nuclear magnetic resonance spectroscopy and mass spectrometry, is integral to the rapidly expanding field of metabolomics, which is making progress in various diseases. In the area of cancer and metabolic phenotype, the integrated analysis of metabolites may provide a powerful platform for detecting changes related to cancer diagnosis and discovering novel biomarkers. In this review, metabolomics including the technologies in metabolomics research and extracting information from metabolomics datasets are described. Then we discuss the challenges and opportunities in metabolomics for finding metabolic processes in cancer and discovering novel cancer biomarkers. Finally, we assess the clinical applicability of metabolomics.  相似文献   

10.
微流控液滴技术及其应用的研究进展   总被引:1,自引:0,他引:1  
微液滴具有体积小、比表面积大,速度快、通量高,大小均匀、体系封闭,内部稳定等特性,在药物控释、病毒检测、颗粒材料合成、催化剂等领域中均有重要应用.微流控技术的发展为微液滴生成中实现尺寸规格、结构形貌和功能特性等的可控设计和精确操控提供了全新平台.本文概述了微流控液滴技术的基本原理、液滴生成方式及其基本操控,比较分析了微液滴的传统制备法与微流控合成法的异同,介绍了近年来微流控液滴技术在功能材料合成、生物医学和食品加工等领域中的研究新进展,探讨并展望了微流控液滴技术的潜在价值和未来发展方向.  相似文献   

11.
A simple DNA diagnosis method using microfluidics has been developed which requires simple and straightforward procedures such as injection of sample and probe DNA solutions. This method takes advantage of the highly accurate control of fluids in microchannels, and is superior to DNA microarray diagnosis methods due to its simplicity, highly quantitative determination, and high-sensitivity. The method is capable of detecting DNA hybridization for molecules as small as a 20 mer. This suggests the difference in microfluidic behavior between single strand DNA (ssDNA) and double stranded DNA (dsDNA). In this work, influence of both the inertial force exerted on DNA molecules and the diffusion of DNA molecules was investigated. Based on the determination of these parameters for both ssDNA and dsDNA by experiments, a numerical model describing the phenomena in the microchannel was designed. Computational simulation results using this model were in good agreement with previously reported experimental results. The simulation results showed that appropriate selection of the analysis point and the design of microchannel structure are important to bring out the diffusion and inertial force effects suitably and increase the sensitivity of the detection of DNA hybridization, that is, the analytical performance of the microfluidic DNA chip.  相似文献   

12.
Xiao Z  Zhang B 《色谱》2011,29(10):949-956
液滴微流控系统是微流控芯片领域的一个新的分支,由于其诸多独特的优势而得到了广泛的研究和报道。本文对液滴的制备和相关的操控技术,包括液滴的分裂、融合、混合、分选、存储和编码等进行了介绍,对液滴技术近年来在化学与生物化学分析等领域中的应用进行了综述,并展望了液滴微流控技术的发展前景。  相似文献   

13.
Analysis of urine is a widely used diagnostic tool that traditionally measured one or, at most, a few metabolites. However, the recognition of the need for a holistic approach to metabolism led to the application of metabolomics to urine for disease diagnostics. This review looks at various aspects of urinalysis including sampling and traditional approaches before reviewing recent developments using metabolomics. Spectrometric approaches are covered briefly since there are already a number of very good reviews on NMR spectroscopy and mass spectrometry and other spectrometries are not as highly developed in their applications to metabolomics. On the other hand, there has been a recent surge in chromatographic applications dedicated to characterising the human urinary metabolome. While developments in the analysis of urine encompassing both classical approaches of urinalysis and metabolomics are covered, it must be emphasized that these approaches are not orthogonal - they both have their uses and are complementary. Regardless, the need to normalise analytical data remains an important impediment.  相似文献   

14.
Polymer particles are key materials in various biomedical applications, including drug delivery, cellular immunity, cell capture, biochip, etc. Droplets produced by microfluidics have been widely applied as templates for the fabrication of polymer particles with controllable sizes and narrow size distributions. Compared to smooth polymer particles, those with surface microstructures (e.g., tentacles, bubbles, wrinkles and pits) are more attractive due to their increased surface area and biomimetic structural characteristics. In this review, we summarized representative methods for the preparation of monodispersed polymer particles with various surface microstructures based on droplet microfluidics, as well as their typical bioapplications in drug delivery, cellular immunity and cell capture. Finally, the current challenges and further development in this research area are discussed.  相似文献   

15.
This review provides an update of the state-of-the-art of CE-MS for metabolomic purposes, covering the scientific literature from July 2008 to June 2010. This review describes the different analytical aspects with respect to non-targeted and targeted metabolomics and the new technological developments used in CE-MS for metabolomics. The applicability of CE-MS in metabolomics research is illustrated by examples of the analysis of biomedical and clinical samples, and for bacterial and plant extracts. The relevant papers on CE-MS for metabolomics are comprehensively summarized in a table, including, e.g. information on sample type and pretreatment, and MS detection mode. Future considerations such as challenges for large-scale and (quantitative) clinical metabolomics studies and the use of sheathless interfacing and different ionization techniques are discussed.  相似文献   

16.
Ye Y  Chen L  Liu X  Krull UJ 《Analytica chimica acta》2006,568(1-2):138-145
The development of molecular electronics using DNA molecules as the building blocks and using microfluidics to build nanowire arrays is reviewed. Applications of DNA conductivity to build sensors and nanowire arrays, and DNA conjugation with other nanostructures, offers an exciting opportunity to build extremely small analytical devices that are suitable for single-molecule detection and also target screening.  相似文献   

17.
Metabolomics, also referred to in the literature as metabonomics, is a relatively new systems biology tool for drug discovery and development and is increasingly being used to obtain a detailed picture of a drug’s effect on the body. Metabolomics is the qualitative assessment and relative or absolute quantitative measurement of the endogenous metabolome, defined as the complement of all native small molecules (metabolites less than 1,500 Da). A metabolomics study frequently involves the comparative analysis of sample sets from a normal state and a perturbed state, where the perturbation can be of any nature, such as genetic knockout, administration of a drug, or change in diet or lifestyle. Advances in mass spectrometry (MS) technologies including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods have provided powerful tools to assess the molecular changes in the metabolome. This review focuses on advances in MS pertaining to the analytical data generation for the main metabolomics methods, namely, fingerprinting, nontargeted, and targeted approaches, as they are applied to pharmaceutical drug discovery and development.  相似文献   

18.
Mass spectrometry-based metabolomics applied to the chemical safety of food   总被引:1,自引:0,他引:1  
Mass spectrometry (MS)-based metabolomics is emerging as an important field of research in many scientific areas, including chemical safety of food. A particular strength of this approach is its potential to reveal some physiological effects induced by complex mixtures of chemicals present at trace concentrations. The limitations of other analytical approaches currently employed to detect low-dose and mixture effects of chemicals make detection very problematic. Besides this basic technical challenge, numerous analytical choices have to be made at each step of a metabolomics study, and each step can have a direct impact on the final results obtained and their interpretation (i.e. sample preparation, sample introduction, ionization, signal acquisition, data processing, and data analysis). As the application of metabolomics to chemical analysis of food is still in its infancy, no consensus has yet been reached on defining many of these important parameters. In this context, the aim of the present study is to review all these aspects of MS-based approaches to metabolomics, and to give a comprehensive, critical overview of the current state of the art, possible pitfalls, and future challenges and trends linked to this emerging field.  相似文献   

19.
DeVoe DL  Lee CS 《Electrophoresis》2006,27(18):3559-3568
The field of microfluidics continues to offer great promise as an enabling technology for advanced analytical tools. For biomolecular analysis, there is often a critical need to couple on-chip microfluidic sample manipulation with back-end MS. Though interfacing microfluidics to MS has been most often reported through the use of direct ESI-MS, there are compelling reasons for coupling microfluidics to MALDI-MS as an alternative to ESI-MS for both online and offline analysis. The intent of this review is to provide a summary of recent developments in the integration of microfluidic systems with MALDI-MS, with an emphasis on applications in proteomics. Key points are summarized, followed by a review of relevant technologies and a discussion of outlook for the field.  相似文献   

20.
While metabolomics attempts to comprehensively analyse the small molecules characterising a biological system, MS has been promoted as the gold standard to study the wide chemical diversity and range of concentrations of the metabolome. On the other hand, extracting the relevant information from the overwhelming amount of data generated by modern analytical platforms has become an important issue for knowledge discovery in this research field. The appropriate treatment of such data is therefore of crucial importance in order, for the data, to provide valuable information. The aim of this review is to provide a broad overview of the methodologies developed to handle and process MS metabolomic data, compare the samples and highlight the relevant metabolites, starting from the raw data to the biomarker discovery. As data handling can be further separated into data processing, data pre‐treatment and data analysis, recent advances in each of these steps are detailed separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号