首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthetic method of ordering hydrophilic gold nanoparticles into a close-packed two-dimensional array at a hexane-water interface and subsequent transferring of such structure onto a solid substrate is described. By repeating the transfer process, multilayered gold nanoparticle films are formed without need of linker molecules. Their surface enhanced Raman scattering (SERS) efficiencies are compared as a function of the number of layers. It is shown that both the number of layers and the particle size contribute to SERS phenomenon. Judging from the noticeable dependence of SERS efficiency on the nanometer scale architecture, the close-packed nanoparticle formation at an immiscible interface presents a facile route to the preparation of highly active and relatively clean SERS substrates by controlling both the particle size and the film thickness. Among the investigated samples, the gold nanoparticle film assembled with quintuple layers of 30 nm diameter particles showed the maximum SERS efficiency.  相似文献   

2.
This work is focused on studying the grafting of gold nanoparticles (Np) on a cystamine self-assembled monolayer on gold, in order to build sensitive immunosensors. The synthesis and deposition of gold nanoparticles, 13 and 55 nm sizes, were characterised by combining Polarisation Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS), X-ray Photoelectron Spectroscopy (XPS) Surface Enhanced Raman Scattering (SERS), and Atomic Force Microscopy (AFM) which all indicated the formation of a dispersed layer of nanoparticles. This observation is explained by the compromise between the high reactivity of amine-terminated layers towards gold, and interparticle repulsions. Nps were then functionalised with antibody probes, and the recognition by an anti-rIgG was assayed both on planar and Np gold surfaces.The important result is that nanoparticles of 55 nm are preferable for the following reasons: they enable to build a denser and well dispersed layer and they increase both the number of receptors (IgGs) and their accessibility. Beside these geometric improvements, a net enhancement of the Raman signal was observed on the 55 nm nanoparticle layer, making this new platform promising for optical detection based biosensors.  相似文献   

3.
This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted with colloidal suspension of gold metal nanoparticles: respectively, the functional groups SH and NH2 bound gold nanoparticles. Gold nanoparticles were prepared by the chemical reduction of HAuCl4 using sodium tricitrate and immobilized onto silanized quartz substrates. Active substrate surface morphology was characterized with scanning electron microscopy (SEM) measurements and gold nanoparticles presented a diameter in the range 40-100 nm. Colloidal hydrophobic films, allowing nonpolar molecule pre-concentration, were obtained. The surfaces exhibit strong enhancement of Raman scattering from molecules adsorbed on the films. Spectra were recorded for two PAHs, naphthalene and pyrene, in artificial sea-water (ASW) with limits of detection (LODs) of 10 ppb for both on MPMS silanized substrates.  相似文献   

4.
The paper proposes a simple and portable approach for the surface enhanced Raman scattering (SERS) spectroscopy in situ determination of carboxylated single walled carbon nanotubes (SWNTs) in river water samples. The method is based on the subsequent microfiltration of a bare gold nanoparticles solution and the water sample containing soluble carbon nanotubes by using a home-made filtration device with a small filtration diameter. An acetate cellulose membrane with a pore size of 0.2 μm first traps gold nanoparticles to form the SERS-active substrate and then concentrates the carbon nanotubes. The measured SERS intensity data were closely fit with a Langmuir isotherm. A portable Raman spectrometer was employed to measure SERS spectra, which enables in situ determination of SWNTs in river waters. The limit of detection was 10 μg L−1. The precision, for a 10 mg L−1 concentration of carbon nanotubes, is 1.19% intra-membrane and 10.5% inter-membrane.  相似文献   

5.
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7 × 1011 particles cm−2) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed in this study would assist in the design of solid phase molecular beacons using gold nanoparticles.  相似文献   

6.
The interaction between amino acids (l-cysteine, l-lysine) and gold nanoparticle layers deposited on ITO glasses was investigated. The citrate capped gold nanoparticles (AuNP) were first deposited as a thin layer onto silanized ITO and subsequently linked with an amino acid, due to strong affinity of thiol and amine groups to gold. The gold nanoparticles had an elliptical shape, with size varying between 7 and 14 nm, as indicated by TEM analysis. After deposition on ITO substrate, the nanoparticles self-assembled into large aggregates with poor contact between, as revealed by AFM. After linking l-cysteine or l-lysine to the surface of nanoparticles layer, a change in morphology occured. A better contact between the gold aggregates boundary developed, which improved the conducting properties of the nanostructured layer. The electrical resistance of the AuNPs layer, obtained from IV measurements, was very high (2.8 × 1013 Ω) and slightly decreased after linking the NPs with amino acids.  相似文献   

7.
Surface-enhanced Raman scattering (SERS) of p-aminothiophenol (PATP) molecules adsorbed onto assemblies of Au(core)/Cu(shell) nanoparticles is reported. We compare it with the SERS spectrum of PATP adsorbed onto gold nanoparticles: both the absolute and relative scattered intensities of various bands in the two spectra are very different. The difference in relative intensity can be ascribed to chemical effects; the chemical enhancement ratio of the two substrates is approximately 3-5. A theoretical analysis based on a charge-transfer model is carried out, which yields a consistent result and shows that the difference in chemical enhancement is mainly due to the state densities and Fermi levels of the substrates. The difference in absolute intensity originates from electromagnetic (EM) enhancement. EM enhancement of Au(core)/Cu(shell) nanoparticles is unlike that of single-component gold or copper SERS-active substrates. The core/shell particle size for optimal enhancement is about 20 nm in the case of a 632.8 nm incident laser (the size ratio of the core and shell layers is about 0.6).  相似文献   

8.
Liu SP  He YQ  Liu ZF  Kong L  Lu QM 《Analytica chimica acta》2007,598(2):304-311
When gold nanoparticles were being prepared by sodium citrate reduction method, citrate anions self-assembled on the surface of gold nanoparticles to form supermolecular complex anions with negative charges, and protonated raloxifene (Ralo) was positively charged and could bind with the complex anions to form larger aggregates through electrostatic force and hydrophobic effects, which could result in the remarkable enhancement of the resonance Rayleigh scattering intensity (RRS), and the appearance of new RRS spectra. At the same time, the second-order scattering (SOS) and frequency-doubling scattering (FDS) intensities were also enhanced. The maximum wavelengths were located near 370 nm for RRS, 520 nm for SOS, and 350 nm for FDS, respectively. Among them, the RRS method had the highest sensitivity and the detection limit was 5.60 ng mL−1 for Ralo, and its linear range was 0.05-2.37 μg mL−1. A new RRS method for the determination of trace Ralo using gold nanoparticles probe was developed. The optimum conditions of the reaction and influencing factors were investigated. In addition, the reaction mechanism and the reasons for the enhancement of RRS were discussed.  相似文献   

9.
Highly dispersed gold nanoparticles within mesoporous thin films (MTFs) have been synthesized through a newly developed controllable strategy, in which (1,4)-bis(triethoxysilyl)propane tetrasufide (BPTS) organosiloxane coupling agent was co-assembled with tetraethyl orthosilicate (TEOS) to form organic groups functionalized mesoporous composite films followed with oxidization, ion-exchange with Au(en)2Cl3 (en: 1,2-ethanediamine) compound and calcination under hydrogen/nitrogen mixing atmosphere. Small-angle X-ray diffraction (XRD) characterization indicated that up to 10 mol% of BPTS could be incorporated into mesoporous hybrid films, and that would not breakup the structural integrity and long-range periodicity. The loaded gold nanoparticles were uniformly distributed due to the molecular level homogenous mixing of the BPTS precursor with TEOS, and its concentration could be controlled via the original ratio of BPTS to TEOS. The nanoparticles had a narrow size distribution with diameters in the size range of 3-7 nm through transmission electron microscopy (TEM) observation and underwent a slight size increase with the higher gold load level. An overall increase in the absorption intensity, a red shift of absorption peak, together with a comparatively narrower bandwidth could be observed at higher gold concentration within composite films from UV-vis spectra. Wide-angle XRD, TEM, X-ray photoelectron spectroscopy (XPS) and UV-vis spectra characterizations all agreed on the fact that the gold loading level could be controlled by the amount of BPTS in the starting sol for preparing MTFs.  相似文献   

10.
We have developed a new class of surface-enhanced Raman scattering beacons (SERS beacons) that can be turned on and off by long-range plasmonic coupling, induced by biomolecular recognition and binding events. The beacons are based on colloidal gold nanocrystals in two sizes (40 and 60 nm) and are prepared by spectral encoding with a Raman reporter molecule, functionalized with thiolated DNA probes, and stabilized and protected by low molecular weight poly(ethylene glycol)s (PEGs). The results show the SERS signal intensities increase by 40-200-fold when the nanoparticle beacons are activated by plasmonic coupling, much higher than the bright-to-dark intensity ratios reported for traditional molecular beacons. Multivalent gold nanoparticles also have exquisite specificity and are able to recognize single-base mismatches or mutations. This class of SERS nanoparticle beacons has novel mechanisms for molecular detection and signal amplification, and its long-range coupling nature raises new opportunities in developing plasmonic probes to detect proteins, cells, and intact viruses.  相似文献   

11.
In this paper, the fabrication, characterization, and application of unique layer-by-layer (LBL) films of dendrimers and metallic nanoparticles is reported. Silver nanoparticles (d = approximately 20 nm) are produced in solution by sodium citrate reduction and incorporated into thin films with generation 1 and 5 DAB-Am dendrimers (polypropylenimine dendrimers with amino surface groups) by the LBL technique. The resulting nanocomposite films are characterized by UV-visible surface plasmon absorption and atomic force microscopy (AFM) measurements, and employed as substrates for surface-enhanced Raman scattering (SERS) of 2-naphthalenethiol. Through variation of the molecular size (dendrimer generation) and concentration of the cross-linker used, as well as the number of layers produced, the optical properties of several different possible architectures are studied. In the films, Ag nanoparticles are shown to be effectively immobilized and stabilized with increased control over their spacing and aggregation. Moreover, the films are shown to be excellent substrates for SERS measurements, demonstrating significant enhancement capability. As expected, large electromagnetic enhancement of Raman scattering signals is found to be strongly dependent on interparticle coupling between neighboring metallic nanoparticles. Finally, the possibility of detecting SERS signals from architectures with intervening layers between the metal nanoparticles and analyte molecules is explored. It is shown that although there are decreases in intensity with increasing number of intervening layers (as is expected from the distance dependence of SERS), electromagnetic enhancement is still able to function at these distances, thus offering the possibility of developing sensors with external layers that are chemically selective for specific analytes.  相似文献   

12.
A simple and accessible method for molecular analyses down to the picomolar range was realized using self-assembled hybrid superparamagnetic nanostructured materials, instead of complicated SERS substrates such as core–shell, surface nanostructured, or matrix embedded gold nanoparticles. Good signal-to-noise ratio has been achieved in a reproducible way even at concentrations down to 5 × 10−11 M using methylene blue (MB) and phenanthroline (phen) as model species, exploiting the plasmonic properties of conventional citrate protected gold nanoparticles and alkylamine functionalized magnetite nanoparticles. The hot spots were generated by salt induced aggregation of gold nanoparticles (AuNP) in the presence of those analytes. Then, the aggregates of AuNP/analyte were decorated with small magnetite nanoparticles by electrostatic self-assembly forming MagSERS hybrid nanostructured materials. SERS peaks were enhanced up to 100 times after magnetic concentration in a circular spot using a magnet in comparison with the respective dispersion of the nanostructured material.  相似文献   

13.
In this study, a new, sensitive, and rapid assay was developed to quantitatively measure the proteolytic enzyme activity using the surface-enhanced Raman scattering (SERS) probe. Two different shapes of gold nanoparticles, gold nanosphere and nanorod particles were produced. SERS label, comprising self-assembled monolayers (SAMs) of Raman reporter molecule (5,5-Dithiobis (2-Nitrobenzoic acid), DTNB), was coated on the surface of the nanoparticles. Two different SERS-based analysis platforms were designed using gold-coated glass slide and polystyrene microtiter plate. The calibration curves were obtained by plotting the intensity of the SERS signal of symmetric NO2 stretching of DTNB at 1326 cm−1vs. the protease concentration. The effects of nanoparticle geometry and assay platform on the protease assay were investigated and the best working combination of the parameters was selected as rod shaped SERS probe and gold-coated glass slide. The correlation between the protease activity and SERS signal was found to be linear within the range of 0.1-2 mU/mL (R2 = 0.979). The limit of detection (LOD) and limit of quantification (LOQ) values of the validated method were found as 0.43 and 1.30 mU/mL, respectively. The intra-day and inter-day precisions of the method, as relative standard deviation (RSD), were determined as 2.5% and 3.6%, respectively. The developed method was successfully applied for quantitative analysis of the commercial enzyme preparate that is used in cheese making process. It was also used for investigation of substrate specificity of protease enzyme towards the casein and bovine serum albumin. The proposed method has a flexibility to try different substrates for the detection of various enzyme activities.  相似文献   

14.
The photoluminescence (PL) of CdSe quantum dots (QD) in aqueous media has been studied in the presence of gold nanoparticles (NP) with different shapes. The steady state PL intensity of CdSe QD (1.5-2 nm in size) is quenched in the presence of gold NP. Picosecond bleach recovery and nanosecond time-resolved luminescence measurements show a faster bleach recovery and decrease in the lifetime of the emitting states of CdSe QD in the presence of quenchers. Surfactant-capped gold nanorods (NR) with aspect ratio of 3 and surfactant-capped and citrate-capped nanospheres (NS) of 12 nm diameter were used as quenchers in order to study the effect of shape and surface charge on the quenching rates. The Stern-Volmer kinetics model is used to examine the observed quenching behavior as a function of the quencher concentration. It was found that the quenching rate of NR is more than 1000 times stronger than that of NS with the same capping material. We also found that the quenching rate decreases as the length of the NR decreases, although the overlap between the CdSe emission and the NR absorption increases. This suggests that the quenching is a result of electron transfer rather than long-range (Forster-type) energy transfer processes. The quenching was attributed to the transfer of electron with energies below the Fermi level of gold to the trap holes of CdSe QD. The observed large difference between NR and NS quenching efficiencies was attributed to the presence of the [110] facets only in the NR, which have higher surface energy.  相似文献   

15.
Au–Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1 × 10−13 M and an enhancement factor of 8.6 × 106 could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation.  相似文献   

16.
In this study, polypyrrole (PPy) films were electrochemically deposited on gold substrates roughened by an electrochemical triangular-wave oxidation-reduction cycles (ORC) in an aqueous solution containing 0.1N KCl. Then the substrates were heated from 25 to 50 °C and the corresponding SERS performances of PPy were observed in situ. The results indicate that the SERS enhancement capabilities of substrates are gradually raised from 25 °C to a maximum at 40 °C and monotonically decreased from 40 to 50 °C. These SERS enhancement capabilities ascribed to the charge transfers from PPy to Au, which are responsible for the chemical effects of SERS mechanisms, are successfully observed via SERS and high resolution X-ray photoelectron spectroscopy (HRXPS) analyses. The variation in content of the oxidized PPy peak of the double peaks in the range of 1000-1150 cm−1 in SERS spectrum obtained on an Au substrate at different temperatures is consistent with its corresponding variation in the SERS intensity of PPy. The variation in content of the oxidized nitrogen of PPy deposited on an Au substrate at different temperatures revealed from an HRXPS analysis also confirms this consistence.  相似文献   

17.
Gold nanoparticles are known for their plasmon resonance absorption (PRA) depending on their size. Our this investigation shows that plasma resonance light scattering (PRLS) signals in the corresponding PRA region could be measured using a common spectrofluorometer, and be enhanced when aggregation of gold nanoparticles occurs due to their interaction with organic small molecules (OSMs). Using captopril (Cap) as an example, we investigated the interactions of gold nanoparticles with OSMs in order to propose a general method of OSMs such as typical clinic organic drugs. In aqueous medium of pH 2.09, there are about 2.2 × 103 Cap molecules covalently binding to the surface of a 10-nm diameter gold nanoparticle through the thiol functional group of Cap, and thus forms a core-shell assembly of [(Au)31000]@[(Cap)2200], displaying strong enhanced PRLS signals in the PRA region of gold colloid. The PRLS intensities characterized at 553.0 nm were found to be proportional to the concentration of Cap over the range of 0.1-1.7 mg L−1 with the determination limit (3σ) of 32.0 μg L−1. With that, Cap in pharmaceutical preparations could be determined with the recovery of 97.0-104.5% and R.S.D. of less than 2.4%.  相似文献   

18.
Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu2+. The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu2+ ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu2+ and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.  相似文献   

19.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

20.
Surface-imprinted core–shell Au nanoparticles (AuNPs) were explored for the highly selective detection of bisphenol A (BPA) by surface-enhanced Raman scattering (SERS). A triethoxysilane-template complex (BPA-Si) was synthesized and then utilized to fabricate a molecularly imprinted polymer (MIP) layer on the AuNPs via a sol–gel process. The imprinted BPA molecules were removed by a simple thermal treatment to generated the imprint-removed material, MIP-ir-AuNPs, with the desired recognition sites that could selectively rebind the BPA molecules. The morphological and polymeric characteristics of MIP-ir-AuNPs were investigated by transmission electron microscopy and Fourier-transform infrared spectroscopy. The results demonstrated that the MIP-ir-AuNPs were fabricated with a 2 nm MIP shell layer within which abundant amine groups were generated. The rebinding kinetics study showed that the MIP-ir-AuNPs could reach the equilibrium adsorption for BPA within 10 min owning to the advantage of ultrathin core–shell nanostructure. Moreover, a linear relationship between SERS intensity and the concentration of BPA on the MIP-ir-AuNPs was observed in the range of 0.5–22.8 mg L−1, with a detection limit of 0.12 mg L−1 (blank ± 3 × s.d.). When applied to SERS detection, the developed surface-imprinted core–shell MIP-ir-AuNPs could recognize BPA and prevent interference from the structural analogues such as hexafluorobisphenol A (BPAF) and diethylstilbestrol (DES). These results revealed that the proposed method displayed significant potential utility in rapid and selective detection of BPA in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号