首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

2.
SPME analysis of Zingiber officinale Roscoe and Curcuma longa L. were performed by using a DVB/CARB/PDMS fiber. The SPME analysis of Zingiber officinale showed that the main components found were camphene (7.27%), geranial (8.37%), α-zingiberene (14.50%), α-farnesene (9.14%), β-bisabolene (6.52%), and β-sesquiphellandrene (9.92%). The SPME analysis of Curcuma longa showed that main components were p-cymene (12.96%) and ar-turmerone (12.08%). Other components were β-phellandrene (7.86%), terpinolene (6.97%), ar-curcumene (8.53%), α-zingiberene (8.46%), and β-sesquiphellandrene (7.37%).  相似文献   

3.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

4.
D.C. Kapsimali 《Talanta》2010,80(3):1311-62
Two different derivatizing reagents were tested for the development of a fast and sensitive method for the determination of selenites (SeIV) in human urine. The reagents were sodium tetraethylborate (NaBEt4) and tetraphenylborate (NaBPh4), respectively, and the procedure is based on in situ derivatization of selenites in aqueous medium. Selenite ions are converted to diethylselenide (DESe) or diphenylselenide (DPhSe) and subsequently collected from the headspace by solid phase microextraction using a silica fiber coated with polydimethylsiloxane (HS-SPME). Finally, they are quantitated by GC/MS in SIM mode. Ethylation over phenylation was proved preferable for the headspace extraction because of the higher volatility of the diethyl-derivative of selenites. The optimization of the HS-SPME conditions was performed both in aqueous and urinary solutions. Under the optimum conditions for HS-SPME, the gas chromatographic conditions were also optimized. Between the two alkylation reagents tetraethylborate was proved more efficient and the quantitation was satisfactory. Aqueous certified reference materials were analyzed to evaluate the accuracy of the method. The precision of the method was 4.2% and the calculated detection limit was 0.05 μg L−1 for human urine.  相似文献   

5.
Solid phase microextraction (SPME) was applied in the development of a protocol for the analysis of a number of target organic compounds in landfill site samples. The selected analytes, including aromatic hydrocarbons, chlorinated hydrocarbous, and unsaturated compounds, were absorbed directly from a headspace sample above a soil layer onto a fused silica fiber. Following exposure, the fiber was thermally desorbed in the injection port of the gas chromatograph and eluted compounds were detected using a mass selective detector. The stability and sensitivity of the extraction technique were examined at five temperatures (22–60°C) using a 100μm polydimethylsiloxane fiber. Calibrations, using soil samples spiked with selected solvents (0.5–30 μg/g), were linear; trichloroethene (r2 = 0.992) and benzene (r2 = 0.998). SPME was applied to the examination of a municipal landfill where 8 sites were sampled, at three depths, resulting in the detection of xylene (maximum 2.8 μg/g) and a number of other non-target organic contaminants.  相似文献   

6.
A novel infrared‐assisted extraction coupled to headspace solid‐phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane‐divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water‐bath heating and nonheating extraction methods, the extraction efficiency of infrared‐assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above‐mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost‐effective, and highly efficient method, the infrared‐assisted extraction coupled to headspace solid‐phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.  相似文献   

7.
采用顶空固相微萃取与气相色谱-质谱联用技术,对八角茴香中风味物质进行了分析。选用自制聚丙烯酸树脂涂层,对样品量、萃取时间、萃取温度、解吸时间等参数进行了优化,结果表明0.10g样品在60℃水浴中顶空萃取40min,250℃下解吸2min达到最佳条件。比较了顶空固相微萃取与传统水蒸气蒸馏两种前处理方法,分析结果非常相似。该方法可用于快速分析八角茴香中的风味物质。  相似文献   

8.
As a part of our search for environmentally friendly solvents to extract the active components of medicinal plants, two sampling techniques, supercritical fluid extraction (SFE) using CO(2) and solid-phase microextraction (SPME) were compared for their efficacy in the analysis of volatiles rhizome components emitted from the medicinal herbs Angelica gigas NAKAI (Korean danggui), Angelica sinensis (Chinese danggui), and Angelica acutiloba (Japanese danggui). A total of 54 compounds released from all of these varieties of Angelica rhizomes were separated and identified by gas chromatography-mass spectrometry (GC-MS). The composition of supercritical extracts from these plants was very different from the solid-phase microextraction products. More compounds were detected by SPME-GC-MS (41) than by SFE-GC-MS (17). The results of these analyses suggest that SFE may be useful for detecting the main components, decursinol angelate and decursin in Korean danggui, and butylidene dihydro-phthalide in both Chinese and Japanese danggui, whereas the results for SPME did not. The SFE method required specialized instrumentation, required little time to prepare the sample, and had a small sample size and no organic solvent. In sum, these results suggest that SFE is useful for extracting the volatile main components of danggui cultivars. Its simplicity, low cost and speed may allow SPME to increase the recovery of volatile components in general without disturbing the main components of the plant.  相似文献   

9.
Headspace solid phase microextraction (HS-SPME) in-situ supercritical fluid extraction (SFE) was investigated for the determination of trace amounts of perfluorocarboxylic acids (PFCAs) in sediments. Quantitation was performed by using gas chromatography coupled to negative chemical ionization-tandem mass spectrometry (GC-NCI-MS/MS). The optimum conditions of HS-SPME following SFE were obtained using 500 μL n-butanol as a derivatization reagent in supercritical carbon dioxide with static extraction for 10 min, then dynamic extraction for 20 min at 30 MPa and 70 °C and simultaneous collected with 100 μm film thickness PDMS fiber. The linear range of proposed method was from 5 to 5000 ng g(-1), with limit of detection ranging from 0.39 to 0.54 ng g(-1) and limit of quantitation ranging from 1.30 to 1.80 ng g(-1). The developed method was successfully applied to analyze PFCAs in sediments from rivers and beach near industrial areas. The concentrations of PFCAs determined are from 282 to 4473 ng g(-1).  相似文献   

10.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

11.
A novel solid‐phase microextraction Arrow was used to separate volatile organic compounds from soy sauce, and the results were verified by using gas chromatography with mass spectrometry. Solid‐phase microextraction Arrow was optimized in terms of three extraction conditions: type of fiber used (polydimethylsiloxane, polyacrylate, carbon wide range/polydimethylsiloxane, and divinylbenzene/polydimethylsiloxane), extraction temperature (40, 50, and 60°C), and extraction time (10, 30, and 60 min). The optimal solid‐phase microextraction Arrow conditions were as follows: type of fiber = polyacrylate, extraction time = 60 min, and extraction temperature = 50°C. Under the optimized conditions, the solid‐phase microextraction Arrow was compared with conventional solid‐phase microextraction to determine extraction yields. The solid‐phase microextraction Arrow yielded 6–42‐fold higher levels than in solid‐phase microextraction for all 21 volatile organic compounds detected in soy sauce due to the larger sorption phase volume. The findings of this study can provide practical guidelines for solid‐phase microextraction Arrow applications in food matrixes by providing analytical methods for volatile organic compounds.  相似文献   

12.
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 μm carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 °C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE.  相似文献   

13.
建立了顶空固相微萃取-气相色谱-串联质谱测定水中戊二醛的方法。设计5因素4水平完整的正交试验,通过极差分析获得顶空固相微萃取优化条件。10 mL,pH 1的水样加入6 g NaCl,经非极性PDM S,100μm纤维头于75℃萃取25 min,210℃解析进样0.2 min。采用VF-5(60 m×0.25 mm×0.25μm)色谱柱程序升温分离,选择多反应监测(M RM)模式采集质谱信息。以m/z 82/54为定量离子,以m/z 82/39为定性离子,外标法定量。结果表明,戊二醛质量浓度在0.02~0.6 mg/L范围内线性良好,相关系数(r)>0.9996,方法检出限7μg/L,定量限20μg/L。低(0.04 mg/L)、中(0.1 mg/L)、高(0.4 mg/L)3个水平加标回收率为87.4%~103.7%,相对标准偏差(RSD)<6%。方法适用于测定水中的戊二醛。  相似文献   

14.
The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid‐phase microextraction method. Volatiles extracted on solid‐phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects.  相似文献   

15.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

16.
In this work, headspace solid-phase micro-extraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) method for analysis of butyltin compounds in sediment samples was upgraded by the introduction of tandem mass spectrometry (MS/MS). Optimization and validation of this method based on an one step procedure, tetraethylborate in situ ethylation with simultaneous extraction by headspace SPME, combined with tandem mass spectrometry is described. A simple leaching/extraction step of mono-(M), di-(D) and tri-(T) butyltin (BT) compounds from the sediment is required as sample pre-treatment. The combination of the two techniques headspace SPME and MS/MS, led to very little matrix interference which permitted to attain limits of detection three or more orders of magnitude lower than those attained in previous methods: 0.3 pg g− 1 for MBT, 1 pg g− 1 for DBT and 0.4 pg g− 1 for TBT. Linear response range was from 0.02–1260 ng g− 1 for MBT, 0.07–1568 ng g− 1 for DBT and 0.04–2146 ng g− 1 for TBT and RSD < 15% was also obtained. The method was efficiently applied to a real sample sediment from Sado River estuary in Portugal, revealing the existence of BTs pollution, as the TBT level of 189 ± 15 ng g− 1 was much higher than the maximum established as provisional ecotoxicological assessment criteria.  相似文献   

17.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

18.
Solid phase microextraction (SPME) was used as the sample introduction technique for high-speed isothermal GC. An injector dedicated for SPME fiber injection was designed and built. The injector was operated in two modes, continuously heated and flash heated. The latter mode proved to be better for high-speed separations. The injector was then used for sample introduction in separation of BTEX. When sampling directly from water with a fiber having a 56 μm thick poly(dimethylsiloxane) coating, the BTEX components were separated under isothermal conditions in ca. 18 s. A fiber with a thinner coating (15 μm) enabled the separation to be completed in ca. 12 s when sampling from headspace. In both cases the results were highly reproducible, as measured by the estimated values of the relative standard deviation.  相似文献   

19.
A potential method for the discrimination and prediction of honey samples of various botanical origins was developed based on the non‐targeted volatile profiles obtained by solid‐phase microextraction with gas chromatography and mass spectrometry combined with chemometrics. The blind analysis of non‐targeted volatile profiles was carried out using solid‐phase microextraction with gas chromatography and mass spectrometry for 87 authentic honey samples from four botanical origins (acacia, linden, vitex, and rape). The number of variables was reduced from 2734 to 70 by using a series of filters. Based on the optimized 70 variables, 79.12% of the variance was explained by the first four principal components. Partial least squares discriminant analysis, naïve Bayes analysis, and back‐propagation artificial neural network were used to develop the classification and prediction models. The 100% accuracy revealed a perfect classification of the botanical origins. In addition, the reliability and practicability of the models were validated by an independent set of additional 20 authentic honey samples. All 20 samples were accurately classified. The confidence measures indicated that the performance of the naïve Bayes model was better than the other two models. Finally, the characteristic volatile compounds of linden honey were tentatively identified. The proposed method is reliable and accurate for the classification of honey of various botanical origins.  相似文献   

20.
郭德华  时逸吟  李优  伊雄海  邓晓军  肖文清  王键  李霄  柳菡  沈伟健 《色谱》2017,35(12):1216-1223
建立了液相色谱-四极杆飞行时间质谱(LC-QTOF MS)测定禽蛋及蛋制品中氟虫腈及其代谢物的快速筛查方法。样品经酸性乙腈提取,PRiME HLB SPE柱净化,Poroshell 120 EC C18色谱柱(150 mm×3 mm,2.7μm)分离,以水-乙腈为流动相,梯度洗脱,负离子模式下测定,以乙虫腈为内标定量。实验中建立了一级精确质量和二级碎片离子质谱数据库,并且对4种禽蛋及蛋制品的基质效应进行了考察。结果表明,氟虫腈及其代谢物在0.1~5μg/L范围内线性关系良好,相关系数(r2)均大于0.99。方法的检出限(LOD,S/N3)和定量限(LOQ,S/N10)分别为0.2μg/kg和1μg/kg。在不同基质中,氟虫腈及其代谢物在1、2和5μg/kg的添加水平下平均加标回收率为82.6%~98.1%,相对标准偏差为3.8%~9.9%(n=6)。该方法有效消除了液相色谱-四极杆飞行时间质谱检测过程中的离子化抑制效应,灵敏度和准确度高,适用于鸡蛋、鸡蛋面、蛋糕和蛋黄酱中氟虫腈、氟虫腈砜、氟虫腈亚砜和氟甲腈的快速筛查。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号