首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric ultrafiltration (UF) membranes were prepared from blends of polyethersulfone (PES)/polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. Polyethylene glycol (PEG) with four different molecular weights was used as pore former and hydrophilic polymeric additive. N,N‐dimethylformamide (DMF) and water were used as solvent and coagulant (nonsolvent), respectively. The effects of different proportion of PES/PAN and molecular weight of PEG on morphology and performance of the prepared membranes were investigated. Performance of the membranes was evaluated using UF experiments of pure water and buffered bovine serum albumin (BSA) solution as feed. The contact angle measurements indicated that the hydrophilicities of PES/PAN membrane increase by increasing the PAN concentration in the casting solution. However, performance of the membranes improves by increasing the PAN concentration in the casting solution up to 20% and then decreases with further addition of PAN. It was found out that the rejection of BSA decreases with increasing the PAN concentration in the casting solution. Furthermore, it was found that the performance of the membranes increases by increasing the molecular weight of PEG up to 1500 Da and then decreases with the higher molecular weights. The morphology of the prepared membranes was studied by scanning electron microscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A method for the preparation of highly conductive and stable organic-inorganic nanocomposite polyelectrolyte membranes with controlled spacing between inorganic segment and covalently bound sulfonic acid functional groups has been established. These polyelectrolyte membranes were prepared by condensation polymerization of the silica precursor (tetraethylorthosilicate) in dimethylacetamide in the presence of poly(ethylene glycol) (PEG) of desired molecular weight, and sulfonated poly(styrene-co-maleic anhydride) was attached to the polymeric backbone by hydrogen bonding. Molecular weight of PEG has been systematically changed to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the thermal as well as conductive properties. These polyelectrolyte membranes were extensively characterized by studying their thermo-gravimetric analysis (TGA), ion-exchange capacity (IEC), water content, conductivity, methanol permeability, and current-voltage polarization curves under direct methanol fuel cell (DMFC) operating conditions as a function of silica content and molecular weight of PEG used for membrane preparation. Moreover, from these studies and estimation of selectivity parameter among all synthesized membranes, 30% silica content and 400 Da molecular weight of PEG resulted in the best nanocomposite polyelectrolyte membranes, which exhibited performance comparable to that of the Nafion 117 membrane for DMFC applications.  相似文献   

3.
Monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing rifampicin (RFP), anti-tubercle drug, as hydrophobic model drug were prepared by solvent evaporation method with a membrane emulsification technique using Shirasu Porous Glass (SPG) membranes. Five kinds of rifampicin-loaded PLGA (RFP/PLGA) microspheres with different sizes were prepared by changing pore size of the membranes. Effect of polyethylene glycol (PEG) added to polyvinyl alcohol (PVA) solution (continuous phase) upon the monodispersity of microspheres was studied. PEG was used as a stabilizer for microspheres dispersing in PVA solution. The most suitable molecular weight of PEG as a stabilizer was 20,000. RFP/PLGA microspheres prepared with PEG20000 were apparently more uniform than those prepared without PEG. The yield of RFP/PLGA microspheres was 100%. The initial burst observed in the release of RFP from RFP/PLGA microspheres was suppressed by the addition of PEG.  相似文献   

4.
Recent development in microporous inorganic membranes represents a significant advance in materials for separation and chemical reaction applications. This paper provides an in-depth review of synthesis and properties of two groups (amorphous and crystalline) of microporous inorganic membranes. Amorphous microporous silica membranes can be prepared by the sol-gel and phase separation methods. Flat sheet, tubular and hollow fiber amorphous carbon membranes have been fabricated by various pyrolysis methods from polymer precursors. A large number of synthesis methods have been developed to prepare good quality polycrystalline zeolite membranes. Several techniques, including vapor and liquid approaches, are reviewed for pore structure modification to prepare microporous inorganic membranes from mesoporous inorganic membranes. Chemical, microstructural and permeation properties of these microporous membranes are summarized and compared among the several microporous membranes discussed in this paper. Theory for gas permeation through microporous membranes is also reviewed, with emphasis on comparison of theoretical with the experimental data. These inorganic microporous membranes offer excellent separation properties by the mechanisms of preferential adsorption, selective configurational diffusion or molecular sieving.  相似文献   

5.
Nanofiltration (NF) grade hollow fiber membrane was prepared by incorporation of zinc chloride into polysulfone–polyethylene glycol (molecular weight 200) blend. A 1.0 wt% zinc chloride in the blend reduced the molecular weight cut off (MWCO) of hollow fibers from 44 kDa (average pore size 64A0) to a nanofiltration range of MWCO 870 Da (average pore size 7.69 A°). MWCO decreased further to 330 Da (average pore size 4.78 A°) on addition of 2.5 wt% zinc chloride. types of NF hollow fiber were spun, corresponding to zinc chloride concentration of 1.0, 1.5, 2.0, and 2.5 wt%. Ternary phase diagram qualitatively explained the denser morphology for various concentrations of zinc chloride. This was supported by scanning electron micrographs of cross‐section and top surface of hollow fibers. NF membranes possessed negative surface charge at extreme pH conditions. Rejection of 1000 mg/l sodium chloride solution was in between 38 to 45% at pH 11, and for divalent sodium sulfate, it was in the range of 55 to 62%. Rejection of dye congo red was found to be 100%. NF membranes showed reasonable antifouling characteristics having flux recovery ratio of more than 90% and a flux decline ratio of less than 10%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This study investigates the effect of PEG additive as a pore-former on the structure formation of membranes and their permeation properties connected with the changes of thermodynamic and kinetic properties in phase inversion process. The membranes were prepared by using polysulfone (PSf)/N-methyl-2-pyrrolidone (NMP)/poly(ethylene glycol) (PEG) casting solution and water coagulant. The resulting membranes prepared by changing the molecular weight of PEG additive and the ratio of PEG to NMP were characterized by scanning electron microscope observations, measurements of water flux and PEG rejection. The thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity. The correlations between the final membrane structure/permeation properties and thermodynamic/kinetic properties of membrane forming system are discussed extensively.  相似文献   

7.
Polylactide (PLA) was plasticized by polyethylene glycols (PEGs) with five different molecular weights (Mw = 200–20,000 g/mol). The effects of content and molecular weight of PEG on the crystallization and impact properties of PLA were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and V‐notched impact tests, respectively. The results revealed that PEG‐10,000 could significantly improve the crystallization capacity and impact toughness of PLA. When the PEG‐10,000 content ranged from 0 to 20 wt%, the increases in both V‐notched Izod and Charpy impact strengths of PLA/PEG‐10,000 blends were 206.10% and 137.25%, respectively. Meanwhile, the crystallinity of PLA/PEG‐10,000 blends increased from 3.95% to 43.42%. For 10 wt% PEG content, the crystallization and impact properties of PLA/PEG blends mainly depended upon PEG molecular weight. With increasing the Mw of PEG, the crystallinity and impact strength of PLA/PEG blends first decreased and then increased. The introduction of PEG reduced the intermolecular force and enhanced the mobility of PLA chains, thus improving the crystallization capacity and flexibility of PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Chitosan-based porous organic-inorganic hybrid membranes supported by microfiltration nylon membranes were prepared, in which gamma-glycidoxypropyltrimethoxysilane (GPTMS) was used as an inorganic source as well as crosslinking reagent. Polyethylene glycol (PEG) with different molecular weight and content was used as imprinting molecule for morphology control. In situ crosslinking of chitosan and simultaneous polymerization of GPTMS in PEG template environment endowed the hybrid membrane with specific characteristics. Distinct hybrid effect between chitosan (CS) and GPTMS was revealed by shifting in X-ray diffraction (XRD) pattern, decomposition in simultaneous thermogravimetry and differential scanning calorimetry (TG/DSC) testing. As manifested by scanning electron microscopy (SEM), the molecular weight and content of PEG had remarkable effect on the resulting surface morphology of the hybrid membrane and a given surface morphology could be obtained by extracting of the imprinted PEG molecular. Among three types of porogen used: PEG 400, PEG 4000 and PEG 20000, only PEG 20000 could result in a porous surface. Moreover, a special porous surface with three-dimensional (3D) hierarchical structure-in-structure pore fashion was obtained when content of PEG 20000 was controlled at 15%. Experimental results also showed that the hybrid membrane had low swelling ratio and high stability in acidic solution. After conveniently coordinated with copper ions, the porous metal chelating hybrid membrane could effectively adsorb the model protein, bovine serum albumin (BSA). As expected, the hybrid membrane imprinted with 15% PEG 20000 had remarkably high copper ion binding and BSA adsorption capacity, which might result from the large surface area, high ligand density and suitable interconnected 3D hierarchical porous surface.  相似文献   

9.
The rejection characteristics of three types of alumina membranes for polyethylene glycol (PEG) polymers and dextrans soluted in water have been investigated. If the temperature at which the membranes are treated is increased, the pore size increases and as a result the cut-off value also increases. The Al2O3-400 membrane (i.e., the membrane treated at 400°C) exhibits a cut-off value of 2,000 for PEG while that of an Al2O3-800 membrane is about 20,000. Both Al2O3-500 and Al2O3-800 membranes show rejections higher than 80% for the dextrans investigated. The rejection behaviour is compared with literature data on Nuclepore membranes. The performance of the alumina membranes is compared with that of other inorganic membranes. Low molecular weight solutes show only small rejection values solar, although high values are reported in the literature for Vycor glass membranes with pores of similar size.  相似文献   

10.
Polymeric membranes were prepared by blending different grades of poly(ethylene glycol) (PEG) as the added polymer with acrylonitrile–butadiene–styrene as the backbone structure. The membranes were characterized by Fourier transform infrared, X‐ray diffractometry, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Furthermore, the gas permeation and separation properties of CO2/CH4 were studied. In addition, the effect of pressure (1–8 bar) and the effect of PEG content (0–40 wt%) on CO2 and CH4 permeability/selectivity were investigated. The results showed that, in more cases, with the introduction of PEG molecules, CO2/CH4 selectivity increases without significant changes in CH4 permeability, indicating that the incorporation of intermolecular interaction is suitable for the separation of gas pairs with no molecular size domination but the solution–diffusion. From the viewpoint of gas separation applications, the resultant data are in the commercially attractive region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
To investigate the effect of poly(ethylene glycol) (PEG) 200 on membrane performance, asymmetric polyetherimide (PEI) membranes with a small pore size were prepared by dry/wet-phase inversion from the casting solution containing N-methyl-2-pyrrolidone as a solvent and poly(ethylene glycol) 200 as an additive. Our experiment revealed that the addition of PEG 200 has an influence on the casting solution properties, permeation properties, and resulting membrane structures. Moreover, a drying process also affects the formation of a dense skin layer. Increasing the amount of PEG 200 drastically improved the solute rejection rate. The drying process improved the rejection rate. We also observed the effect of the mixed solvent (water/ethanol) on permeation through the membranes with various pore sizes. In the case of the membrane with a dense skin layer, the solvent permeation showed relationships with solution viscosity, surface tension, and membrane-solvent interaction.  相似文献   

12.
Microporous poly(vinylidene fluoride) (PVDF) membranes with asymmetric pore structure were prepared by a wet phase inversion process. The polymer was precipitated from a casting solution when immersed in a cold water (gelation) bath. The casting solution was, in most cases, composed of polymer, solvent, and nonsolvent. In this solvent-nonsolvent system, the solvents used were triethylphosphate (TEP) and dimethylsulfoxide (DMSO), and the nonsolvents used were glycerol and ethanol. Mean pore sizes and effective porosity of the microporous membranes were calculated using the gas permeation method. They were studied as a function of evaporation time of wet nascent film, polymer molecular weight, concentration of polymer, and concentration of nonsolvent. The morphology of the membranes was examined by scanning electron microscopy (SEM).  相似文献   

13.
Polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared by dry/wet and wet phase inversion methods. In spinning these PVDF hollow fibers, dimethylacetamide (DMAc) and polyvinyl pyrrolidone (PVP) were used as a solvent and an additive, respectively. Water was used as the external coagulant. Water or ethanol was used as the internal coagulants. The membranes were characterized in terms of water flux, molecular weight cut-off for the wet membranes. Gas permeation fluxes and effective surface porosity were determined by a gas permeation method for the dried membranes. The cross-sectional structures were examined by scanning electron microscopy. The effects of polymer concentration, air-gap, PVP molecular weight, PVP content in the polymer dope, and the internal coagulant on the permeation properties and membrane structures were examined. Highly permeable PVDF hollow fiber membranes could be prepared from a polymer dope containing low molecular weight PVP and using ethanol as the internal coagulant.  相似文献   

14.
This work presents the fabrication of cellulose acetate (CA)–ceramic composite membranes using dip coating technique. Ceramic supports used in this work were prepared from kaolin with an average pore size of 560 nm and total porosity of 33%. The dip coating parameters studied experimentally were the concentration of CA solution (varying from 2 wt% to 8 wt%) in acetone and dipping time (varying from 30 s to 150 s). The fabricated composite membranes were characterized using scanning electron microscope, gas permeation, pure water flux and ultrafiltration (UF) experiments using bovine serum albumin (BSA). It was observed that the membrane prepared with 2 wt% and 4 wt% CA were suitable for microfiltration applications and those with 6 wt% and 8 wt% were for ultrafiltration applications. Theoretical investigation was conducted to know the macroporous and mesoporous structure of the prepared membranes using Knudsen and viscous permeability analysis of air. A resistance in series model was applied to identify different resistances responsible for the flux decline. Phenomenological models were proposed to illustrate the dependency of hydraulic resistance of membrane on the structural parameters such as average pore size, effective porosity as well as dip coating parameters like dipping time and concentration of CA. It was found that, the growth rate of CA film on the ceramic support followed exponential growth law with respect to dipping time. The total hydraulic resistance of the membrane was evaluated to be inversely proportional to the ratio of pore sizes of top layer and ceramic support. The resistance due to the CA film was found to be depended to the order of 1.73 with respect to concentration of CA. An increase in the concentration of CA was found to be more effective than dipping time to reduce the membrane pore size.  相似文献   

15.
The interaction of lithium perfluorononanoate (LiPFN) with poly(ethylene glycol) (PEG) molecules of different molecular weights (300 < MW < 20000 Da) has been investigated in water at 298.15 and 308.15 K by isothermal titration calorimetry (ITC). Density, viscosity, and conductivity measurements were also performed at 298.15 K. The aggregation process of this surfactant on the PEG polymeric chain was found to be very similar to that exhibited by cesium perfluorooctanoate (CsPFO) and appears to be consistent with the necklace model. ITC titrations indicated that a fully formed LiPFN micellar cluster can be wrapped by a PEG chain having a molecular weight (MW) of approximately 3200 Da, longer than that required by the shorter perfluorooctanoate (MW approximately 2600 Da), and also suggested a stepwise mechanism for the aggregation of successive micelles. Viscosity data indicate that the formation of polymer-surfactant complexes between PEG and LiPFN involves a conformational change of the polymer. The aggregation of preformed micelles of LiPFN or CsPFO or SDS on the PEG polymeric chain always gives rise to further stabilization.  相似文献   

16.
Gas permeation through a typical state-of-the-art membrane can be described by defining three morphological features: namely skin thickness, skin integrity, and substructure resistance. Traditional gas permeation measurements tend to characterize skin thickness and skin integrity, but not substructure resistance. This presents a serious obstacle to the optimization of advanced hollow fiber membranes, since as skin thicknesses are reduced, substructure resistance becomes an increasingly significant contribution to the overall permeation rate. This paper illustrates how substructure resistance can affect permeation properties and demonstrates a new technique for characterizing this frequently important morphological feature. The technique involves applying a constant transmembrane pressure while varying the average gas pressure within the membrane. Thus, the mean free path of gas molecules permeating through the substructure can be altered while maintaining a constant driving force for permeation. Such experiments characterize the magnitude of the substructure resistance, as well as provide insight into the governing transport mechanism. These constant driving force/variable pressure permeation measurements can estimate the average pressure or mean free path at the transition where substructure resistance becomes negligible. This can then be used to compare the morphological features of different membranes. This technique is demonstrated on well-defined coated ceramic membranes, asymmetric polymeric flat sheet membranes, and asymmetric polymeric hollow fiber membranes.  相似文献   

17.
The preparation and properties of asymmetric poly(vinyldiene fluoride)(PVDF)membranes are described in this study.Membranes were prepared from a casting solution of PVDF,N,N-dimethylacetamide(DMAc)solvent and water- soluble poly(ethylene glycol)(PEG)additives by immersing them in water as coagulant medium.Experiments showed that when PEG molecular weight increased,the changes in the resultant membranes' morphologies and properties showed a transition point at PEG6000.This indicated that PEG with a relati...  相似文献   

18.
Quantitative determination of polyethylene glycol (PEG) impurities in two monofunctional polyglycol types, PEG methyl ether (M-PEG) and PEG vinyl ether (V-PEG), has been carried out by reversed-phase liquid chromatography with evaporative light scattering detection (ELSD). In addition to optimizing the resolution between PEG and monofunctional PEG peaks, the major focus has been to determine the molecular weights of PEG impurities in M-PEG and V-PEG of diverse molecular weights. The latter is achieved by examining liquid chromatography–mass spectrometry (LC–MS) mass spectra of both monofunctional PEG and PEG in several cases, and matching peak retention times with those of available PEG standards for all M-PEG and V-PEG sample types. This information is helpful in selecting the appropriate PEG standard to determine PEG content in each sample type. ELSD response factors for various PEG standards have also been compared. It has been found that PEG standards with molecular weights from 1000 Da to 8000 Da show responses that are within 10% of each other. However, a low molecular weight PEG such as PEG 400, provides approximately 30% less response compared to its higher molecular weight counterparts.  相似文献   

19.
Cellulose acetate (CA) membranes blended with Polyethylene glycol (PEG) in acetone–water solvent system were synthesized by using solution-casting method that resulted in the formation of flexible, white membranes. Different molecular weight (MW) grades of PEG (including MW 1000, 10,000 and 20,000?g/mol) were used. Cast membranes were tested for tensile strength and permeability at different loading of PEG MW 10,000 and 20,000?g/mol. Excellent flexible membranes were produced in acetone–water solvent system in the presence of PEG, which were otherwise brittle. Surface structure and morphology were analysed using scanning electron microscopy. The presence of different functional groups was confirmed using Fourier transform infra-red spectroscopy and the mechanical characteristics were studied by tensile testing. The introduction of PEG caused an increase in permeability of the membranes. The increase in permeability is due to the opening up of pores as the membrane becomes more flexible, when the plasticizer is added. The permeability continues to increase with the addition of PEG. Moreover, the resulting membranes are not only more flexible, but also have largely improved tensile strength as compared to the CA membranes without PEG. This improved tensile strength can also be attributed to the improved flexibility of the membrane. A trade-off is reached between tensile strength and permeability as increasing amount of PEG improves tensile strength but the resulting membrane becomes too permeable to be used for gas separation. Moreover, using PEG of higher MW resulted in porous membranes, even at low amounts of PEG. Therefore, we concluded that CA membrane with less amount of low-MW PEG (i.e. 5% PEG of MW 1000?g/mol) must be used to optimize both permeability and tensile strength of the membrane.  相似文献   

20.
Flat‐sheet asymmetric polyethersulfone (PES) membranes were prepared from polyethersulfone (PES)/ polyethylene glycol (PEG)/ N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion induced by immersion precipitation in water coagulation bath. Effects of propionic acid (PA) as a non‐solvent additive (NSA) on morphology and performance of the membranes prepared from PES/PEG 6000/NMP system in water coagulation bath were investigated. The cross section morphology of the membranes was studied by scanning electron microscopy (SEM). In addition, performance of the membranes was studied by water content measurements and separation experiments using pure water and human serum albumin (HSA) protein solution as feeds. According to SEM analysis, it was found out that the NSA has a significant influence on the structure of the skin layer and the sublayer. The obtained results indicated that addition of PA to the casting solution decreases permeation flux of the prepared membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号