首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.  相似文献   

2.
A series of soluble hexabenzocoronene (HBC) derivatives with pendant optically active (S)-3,7-dimethyloctanyl and (R,S)-3,7-dimethyloctanyl (mixture of stereoisomers) hydrocarbon side chains with and without a phenylene spacer were assembled into differently ordered arrays at the interface between a solution and the basal plane of highly oriented pyrolytic graphite (HOPG). Molecularly resolved scanning tunneling microscopy (STM) images revealed that all derivatives self-assemble into oriented crystals in quasi-two dimensions. However, while for the alkyl-substituted HBCs (1,4) all of the single aromatic cores within a monolayer exhibit the same contrast in the STM, the single aromatic cores with a phenylene group between the alkyl side chains and the aromatic core (2a,2b,3) exhibit different contrasts within a monolayer. For the disks carrying racemic branched or n-alkyl side chains (2b,3) a random distribution of the two different contrasts within the 2D-crystal is observed, while the optically active phenylene-alkyl-substituted HBC (2a) exhibits a periodical distribution of three contrasts within the monolayer. We attribute the different contrasts of the aromatic cores in the presence of the phenylene groups to a loss of the planarity of the whole molecule and different conformations, which allow the conjugated disks to attain different equilibrium positions above the surface of HOPG. In the case of the optically active side chains a regular superstructure with three distinctly different positions such as in a staircase is attained. The self-assembly processes are governed by the interplay of intramolecular as well as intermolecular and interfacial interactions. In the present case, the interactions may induce both the molecules to acquire well distinct positions along the z axis and to adopt different conformations. The reported results open new avenues of exploration. For instance, the different couplings of conjugated molecules with the substrate at different separations can be investigated by means of scanning tunneling spectroscopy (STS). Furthermore, experiments on the STM tip-induced switching of single molecules embedded in a monolayer appear feasible.  相似文献   

3.
We report the synthesis and characterization of covalent dyads and multiads of electron acceptors (A) and donors (D), with the purpose of exploiting their nanophase separation behavior toward (a) two-dimensional (2D) surface patterning with well-defined integrated arrays of dissimilar molecular electronic features and (b) bulk self-assembly to noncovalent columnar versions of the so-called "double cable" systems, the likes of which could eventually provide side-by-side percolation pathways for electrons and holes in solar cells. Soluble, alkylated hexa-peri-hexabenzocoronenes (HBCs) bearing tethered anthraquinones (AQs) are shown by scanning tunneling microscopy (STM) to self-assemble at the solution-graphite interface into either defect-rich polycrystalline monolayers or extended 2D crystalline domains, depending on the number of tethered AQs. In the bulk, the thermal stability of the room-temperature HBC columnar phase is increased, which is attributed to the desired nanotriphase separation of HBC columns, insulating alkyl sheaths, and AQ units. Homeotropic alignment (columns normal to surfaces), predicted to be ideal for potential exploitation of such "double cables" in photovoltaic devices, is demonstrated.  相似文献   

4.
Within the scope of this paper, nine π-expanded mono-substituted 5,8,11,14,17-pentakis-(tert-butyl)-hexa-peri-hexabenzocoronenes (HBC) are introduced. 2-Iodo-5,8,11,14,17-pentakis-(tert-butyl)-hexa-peri-hexabenzocoronene served as precursor and was reacted with ethynyltrimethylsilane in a Sonogashira coupling reaction. The acetylene unit is used as a linker and can undergo another Sonogashira coupling reaction combining different phenyl coupling partners with the HBC core. The electron-withdrawing groups such as nitrile, pyridine and carbonyl species (aldehyde, methylester, carboxylic acid) as well as the three quinoxaline based species (diphenylquinoxaline, dibenzo[a,c]phenazine, phenanthro[4’,5’-a,b,c]phenazine) serve as substitution moieties. Their influence on the optoelectronic properties were investigated by UV/Vis absorption spectroscopy demonstrating a maximum redshift of 7 nm compared to starting compound 2-Iodo-5,8,11,14,17-pentakis-(tert-butyl) HBC. As for the phenanthro[4’,5’-a,b,c]phenazine substituted HBC a dramatic decrease in the intensity of the absorption of the UV/Vis spectrum was observed. The fluorescence spectroscopy pointed out that the dibenzo[a,c]phenazine and phenanthro[4’,5’-a,b,c]phenazine substitution changed the spectra to one broad peak departing from the characteristic HBC-like emission pattern.  相似文献   

5.
We report on the synthesis and scanning tunneling microscopy (STM) studies of a series of linear molecular rods (1-5) comprising different numbers and/or spatial arrangements of perfluorinated benzene and benzene subunits interlinked with diacetylenes in the para position and decorated with or without terminal dodecyl chains. The molecules organize themselves into well-ordered 2D crystal structures at the liquid/solid interface through intermolecular and molecule-substrate interactions. Whereas the molecules substituted by dodecyl chains form the lamellar structures with alternating rigid core rows and alkyl chain rows, the unsubstituted ones change the orientation of the rigid backbones with respect to the lamellar axis. The molecular arrangement is not influenced by fluoro substituents on any phenyl ring of the backbone, which suggests that the interactions between the π-conjugated backbones are dominated by close packing rather than by the dipole moments of the rods or fluorine-based intermolecular interactions.  相似文献   

6.
The self‐assembly behavior of five star‐shaped pyridyl‐functionalized 1,3,5‐triethynylbenzenes was studied at the interface between an organic solvent and the basal plane of graphite by scanning tunneling microscopy. The mono‐ and bipyridine derivatives self‐assemble in closely packed 2D crystals, whereas the derivative with the more bulky terpyridines crystallizes with porous packing. DFT calculations of a monopyridine derivative on graphene, support the proposed molecular model. The calculations also reveal the formation of hydrogen bonds between the nitrogen atoms and a hydrogen atom of the neighboring central unit, as a small nonzero tunneling current was calculated within this region. The title compounds provide a versatile model system to investigate the role of multivalent steric interactions and hydrogen bonding in molecular monolayers.  相似文献   

7.
Iodinated quaterthiophenes 2-3 have been synthesized and their self-assembling behavior investigated at the liquid-solid interface by means of high-resolution scanning tunneling microscopy in comparison to parent oligothiophene 1. All three compounds spontaneously give well-ordered 2D crystalline monolayers at the graphite surface and order in a lamella-type arrangement of the conjugated backbones concomitant with an interlocking of the alkyl side chains. Symmetrically substituted oligothiophenes 1 and 3 without a relevant dipole moment self-assemble in a similar fashion, exhibiting comparable unit cells, whereas monoiodo derivative 2 arranges as pairs along the lamella axis due to the presence of a permanent dipole moment induced by the polarizable halogen group. Corroborated by quantum chemical calculations, novel head-to-head (iodo-iodo) intermolecular interactions were found to take place for this unsymmetrical derivative. The investigation of mixed solutions clearly reveals that at the solid-liquid interface a homogeneous layer of this compound is formed, which comprises the highest packing density leading to a separation process at the interface.  相似文献   

8.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

9.
Cyclophanes with the largest-to-date polycyclic aromatic hydrocarbon (hexa-peri-hexabenzocoronene, HBC) to be entrained in such a structural motif are reported. The two disks are covalently captured by intermolecular ring-closing olefin metathesis of dienes in good yield. DSC, optical microscopy, and WAXD show the new cyclophanes to self-assemble to thermotropic columnar liquid crystal mesophases similar to monomeric analogues. Solution spectroscopic studies reveal that the two disks within a single unit lie face-to-face, with a small average lateral offset. Self-assembly into two-dimensional crystals at a solid-liquid interface was visualized by STM, and the electrical properties of single molecules were assessed by scanning tunneling spectroscopy revealing a diode-like behavior which is similar to that previously reported for single HBC disks, laying the groundwork for future electrical interrogations of dynamic molecular complexes.  相似文献   

10.
Polyalanine derivatives containing cysteamine linker R-(Ala)14NH-(CH2)2-SH, where R is ferrocenecarbonyl or hydrogen, were synthesized and then used to form self-assembled monolayers on gold. The tilt angles and the packing density of the molecules within monolayer assemblies were determined by FTIR spectroscopy and scanning tunneling microscopy, respectively. Electrochemical properties of monolayer-modified electrodes were studied using cyclic voltammetry and impedance spectroscopy. Measurements of electron-transfer rates using electrochemical techniques and scanning tunneling spectroscopy revealed asymmetry dependent on the applied voltage. It is suggested that the observed electron-transfer behavior is connected with the electric field generated by the molecular dipole of the polyalanine helix.  相似文献   

11.
Pyrene-fused tetraazaporphyrins were synthesized from pyrene-4,5-dicarbonitrile precursors using a recently reported procedure as the key step for the asymmetric substitution of pyrene. Metal-free, zinc- and lead-centered pyrenocyanines were obtained and their optical properties as well as their molecular assembly in the solution and bulk phases and at the liquid/solid interface were studied. The characteristic Q-band appears broadened, most likely owing to distortion of the molecule introduced by the steric demand of the angularly extended aromatic residue. The angular annulation does not bathochromically shift the Q-band as far as would have been expected for the linear case. Peripheral substitution with linear and branched alkoxy chains affords solubility of the compounds in organic solvents. The influence of the distinct steric demand of the substituents on aggregation was investigated for metal-centered pyrenocyanines by using temperature-dependent (1)H NMR and UV/Vis spectroscopy. The self-assembly at the liquid/solid interface was studied using scanning tunneling microscopy. The alkoxy substituents facilitate the anchoring of these slightly non-planar molecules on the surface of graphite. Pyrenocyanine molecules form well-ordered 2D arrays in which the molecules are arranged in rows. The angular annulation of the pyrenocyanine residue leads to characteristic adsorption behavior at the liquid/solid interface, in which the molecules adsorb in two different adsorption geometries. The alkoxy side-chains give rise to a discotic columnar superstructure and induce distinct thermotropic behavior. Dependent on the steric demand of the branched chains and the central metal atom, the molecules are rotated with respect to each other to form helical organization.  相似文献   

12.
The order of self-assembled monolayers of Cu(II) salicylic aldehyde and aldimine complexes has been gradually changed by ligand substitution and the resulting nanostructures have been studied at the graphite/liquid interface using scanning tunneling microscopy.  相似文献   

13.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

14.
Regardless of the absence of alkyl chains and conventional hydrogen bonding sites as well as its small size, 2,6-diethynylpyridine forms an ordered array at the interface between 1-phenyloctane and highly oriented pyrolytic graphite (HOPG) under room temperature conditions, as revealed by scanning tunneling microscopy. We propose a model for the superperiodic molecular arrangement with reference to the bulk crystal structure, in which the surface pattern is governed by weak C-H...N and C-H...pi hydrogen bonds as well as the periodic potential of the underlying graphite surface.  相似文献   

15.
We report on the role of morphology in photovoltaic diodes with blend active layers composed of perylene tetracarboxdiimide (EPPTC) and hexabenzocoronene (HBC) derivatives as electron and hole acceptors. Controlled annealing of HBC:EPPTC films while in conformal contact with a flat elastomeric stamp improves photovoltaic response, leading to an external quantum efficiency of 29.5% at 460 nm and an open-circuit voltage of 0.70 V. The improved performance is attributed in part to larger crystalline domains following annealing. The elastomeric stamp restricts the top surface of the thin film during annealing, leading to low surface roughness, while also allowing for greater vertical stratification of the components in the bulk. Blended HBC:EPPTC films also exhibit an unique optical absorption feature near 590 nm, which we attribute to an altered crystalline packing of EPPTC in the presence of HBC. The significance of the local structure at molecular heterojunctions in blended active layer photovoltaic diodes is discussed.  相似文献   

16.
We describe the 2D assemblies of a series of N,N'-dialkyl-substituted quinacridone derivatives on highly oriented pyrolytic graphite observed by scanning tunneling microscopy. Our experiments have demonstrated that pure quinacridone derivatives take contractive conformations, but quinacridone derivatives take extended conformations when co-adsorbed with dicarboxylic acid. Interestingly, by co-adsorption with monofunctional acid stearic acid, quinacridone derivative bearing two smaller substituted groups of trifluoromethyl takes an extended conformation, while quinacridone derivative bearing two larger substituted groups of tert-butyl still takes a contractive conformation. Therefore, the 2D structure of the quinacridone derivatives can be fine-tuned by co-adsorbing with monofunctional/bifunctional acid through hydrogen bonds.  相似文献   

17.
The 2D assembly of phthalhydrazide 1 and aminopyrimidine 2 derivatives equipped with C16 and C8 alkyl chains, respectively, on highly ordered pyrolytic graphite (HOPG) was studied by scanning tunneling microscopy. Well-defined, rather complex surface layer patterns emerge resulting from a delicate balance of (self-) complementary (strong) hydrogen bonds and van der Waals force-driven ordering of the alkyl substituents on the HOPG surface. The four different compounds and their 1:1 mixtures yield seven different 2D structures. Phthalhydrazide offers in principle three tautomeric forms, with the lactim/lactam being the most stable. Depending on the solvent, different morphologies can be obtained. In one case, the special self-assembly of achiral 1a leads to a 2D chiral packing with the left- and right-hand motifs present in different domains. We assume that pure 1a is expressed in its lactim/lactam form, whereas in a 1:1 mixture with 2a it switches to the bislactam form. These features display a process of dynamic diversity generation through tautomerism resulting in different nanostructures in response to environmental parameters.  相似文献   

18.
We describe the two-dimensional (2D) assemblies of N,N'-dialkyl-substituted quinacridone derivatives on highly orientated pyrolytic graphite observed by scanning tunneling microscopy, and focus our discussion on whether the supramolecular organization can be modulated by the coadsorption of dicarboxylic acids. Our experiments have demonstrated that the quinacridone derivatives can form different 2D nanostructures when coadsorbed with dicarboxylic acids of different length at the liquid/graphite interface. Interestingly, N,N'-dihexadecyl-substituted quinacridone derivative alternately takes two different conformations in two columns for its coadsorption with pentadecanedioic acid and form a gridlike structure. It is shown that a cooperative effect of different interactions can be modulated by introducing guest molecule, leading to formation of different self-assembled nanostructures.  相似文献   

19.
In situ low-temperature scanning tunneling microscopy (LT-STM) and ultraviolet photoelectron spectroscopy (UPS) experiments have been carried out to investigate the interface properties at the C(60)∕p-sexiphenyl (6P) organic-organic heterojunction interface, including the interfacial energy level alignment and the supramolecular packing structures. As revealed by UPS measurements, the vacuum level is almost aligned at the C(60)∕6P interface, suggesting that the interface is dominated by weak intermolecular interactions, such as van der Waals and π-π interactions. In situ LT-STM experiments also indicate the formation of a molecularly sharp C(60)∕6P interface with hexagonally-close-packed C(60) layers nucleated atop 6P layer on graphite.  相似文献   

20.
Poly(ethylene oxide)-block-poly(l-lysine) (PEO-PLL) was complexed with an amphiphilic hexa-peri-hexabenzocoronene (HBC). This produced a thermotropic liquid crystalline material (PEO-PLL-HBC), which was investigated by FTIR spectroscopy and differential scanning calorimetry as well as by wide- and small-angle X-ray scattering. It was found that the poly(l-lysine) blocks form an alpha-helical secondary structure. Each helix is surrounded symmetrically by six discotic columns of HBC, which gives an alpha-helical-within-discotic column structural entity. The dense packing of these entities produces hexagonal sublattices (formed by the columns) in the frame of a two-dimensional hexagonal lattice (formed by the helices). An order-order transition from a columnar structure Col1 to Col2 was found at 54 degrees C. The unit cell constants are 5.75 nm (Col1) and 6.60 nm (Col2). The larger unit cell size of Col2 was explained by a higher intracolumnar order of the latter in which the packing distance of the disklike HBC cores is well-defined (0.353 nm). PEO-PLL-HBC combines essential features of liquid crystals with a basic structural element of proteins into a single material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号