首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The effect of substances as possible inhibitors of the K+(Na+)/H+ exchanger in the human red cell membrane has been tested on the (ouabain+bumetanide+EGTA)-resistant K+ influx in both physiological (HIS) and low ionic strength (LIS) solution with tracer kinetic methods. It is demonstrated that high concentrations of quinacrine (1 mM) and chloroquine (2 mM) inhibit the residual K+ influx in LIS solution to 60% and 85%, respectively, but activate it in HIS solution. Thus, chloroquine suppressed the 10-fold LIS-induced activation of the flux nearly completely. Amiloride derivatives were able to inhibit the K+ influx in both HIS and LIS solution. EIPA (75 microM) reduced the flux by about 20% and 55% in HIS and LIS solution, respectively. Newly developed drugs (HOE 642, 1 mM; HOE 694, 0.5 mM) designed to inhibit Na+/H+ exchanger isoforms showed an inhibition of the residual K+ influx of 40% and 33% in HIS and 65% and 44% in LIS solution, respectively, without haemolysis. The inhibitory effect of HOE 642 persisted in HIS (24%) and LIS (48%) solutions when Cl- was replaced by CH3SO4-. The K(+)-Cl- cotransport inhibitor DIOA (100 microM) stimulated the residual K+ influx in both solutions. It is, therefore, concluded that the K(+)-Cl- cotransporter does not contribute to the residual K+ influx both in HIS and LIS media. Okadaic acid decreased the residual K+ influx by 40% and 25% in HIS and LIS solution, respectively, showing that the residual K+ influx is affected by phosphatases like other ion transport pathways. The results show that the residual K+ influx can be decreased further by inhibiting the K+(Na+)/H+ exchanger. It remains still unclear to what extent the K+(Na+)/H+ exchanger is inhibited by the different substances used. However, the ground state membrane permeability for K+ is much smaller than assumed so far.  相似文献   

2.
Na+-Ca2+ exchanger (NCX) transports Ca2+ coupled with Na+ across the plasma membrane in a bi-directional mode. Ca2+ flux via NCX mediates osteogenic processes, such as formation of extracellular matrix proteins and bone nodules. However, it is not clearly understood how the NCX regulates cellular Ca2+ movements in osteogenic processes. In this study, the role of NCX in modulating Ca2+ content of intracellular stores ([Ca2+]ER) was investigated by measuring intracellular Ca2+ activity in isolated rat osteoblasts. Removal of extracellular Na+ elicited a transient increase of intracellular Ca2+ concentration ([Ca2+]i). Pretreatment of antisense oligodeoxynucleotide (AS) against NCX depressed this transient Ca2+ rise and raised the basal level of [Ca2+]i. In AS-pretreated cells, the expression and activity of alkaline phosphatase (ALP), an osteogenic marker, were decreased. However, the cell viability was not affected by AS-pretreatment. Suppression of NCX activity by the AS-pretreatment decreased ATP-activated Ca2+ release from intracellular stores and significantly enhanced Ca2+ influx via store operated calcium influx (SOCI), compared to those of S-pretreated or control cells. These results strongly suggest that NCX has a regulatory role in cellular Ca2+ pathways in osteoblasts by modulating intracellular Ca2+ content.  相似文献   

3.
Doxorubicin (DOX) is one of the most potent anticancer drugs and induces acute cardiac arrhythmias and chronic cumulative cardiomyopathy. Though DOX-induced cardiotoxicity is known to be caused mainly by ROS generation, a disturbance of Ca2+ homeostasis is also implicated one of the cardiotoxic mechanisms. In this study, a molecular basis of DOX-induced modulation of intracellular Ca2+ concentration ([Ca2+]i) was investigated. Treatment of adult rat cardiomyocytes with DOX increased [Ca2+]i irrespectively of extracellular Ca2+, indicating DOX-mediated Ca2+ release from intracellular Ca2+ stores. The DOX-induced Ca2+ increase was slowly processed and sustained. The Ca2+ increase was inhibited by pretreatment with a sarcoplasmic reticulum (SR) Ca2+ channel blocker, ryanodine or dantrolene, and an antioxidant, alpha-lipoic acid or alpha-tocopherol. DOX-induced ROS generation was observed immediately after DOX treatment and increased in a time-dependent manner. The ROS production was significantly reduced by the pretreatment of the SR Ca2+ channel blockers and the antioxidants. Moreover, DOX-mediated activation of caspase-3 was significantly inhibited by the Ca2+ channel blockers and a-lipoic acid but not a-tocopherol. In addition, cotreatment of ryanodine with alpha-lipoic acid resulted in further inhibition of the casapse-3 activity. These results demonstrate that DOX-mediated ROS opens ryanodine receptor, resulting in an increase in [Ca2+]i and that the increased [Ca2+]i induces ROS production. These observations also suggest that DOX/ROS-induced increase of [Ca2+]i plays a critical role in damage of cardiomyocytes.  相似文献   

4.
The formation constants of dioxouranium(VI)-1,2,3-propanetricarboxylate [tricarballylate (3-), TCA] complexes were determined in NaCl aqueous solutions at 0 < or = I/mol L(-1) < or = 1.0 and t=25 degrees C, by potentiometry, ISE-[H+] glass electrode. The speciation model obtained at each ionic strength includes the following species: ML-, MLH0, ML2(4-) and ML2H3- (M = UO2(2+) and L = TCA). The dependence on ionic strength of protonation constants of 1,2,3-propanetricarboxylate and of the metal-ligand complexes was modeled by the SIT (Specific ion Interaction Theory) approach and by the Pitzer equations. The formation constants at infinite dilution are [for the generic equilibrium p UO22+ + q (L3-) + r H+ = (UO2(2+))p(L)qHr(2p-3q+r); betapqr]: log beta110 = 6.222 +/- 0.030, log beta111 = 11.251 +/- 0.009, log beta121 = 7.75 +/- 0.02, log beta121 = 14.33 +/- 0.06. The sequestering ability of 1,2,3-propanetricarboxylate towards UO2(2+) was quantified by using a sigmoid Boltzman type equation.  相似文献   

5.
Human red blood cells (RBC) contain a cytoplasmic, nonhemoglobin protein which activates the (Ca2+-Mg2+)ATPase of isolated RBC membranes. Results presented in this paper confirm that activation of (Ca2+-Mg2+)ATPase is associated with binding of the cytoplasmic activator to the membrane. Binding of the cytoplasmic activator is reversible and dependent on ionic strength and Ca2+. Cytoplasmic activator is sensitive to trypsin but is not degraded when intact RBC are exposed to trypsin. Cytoplasmic activator does not modify the (Ca2+-Mg2+)-ATPase of membranes from RBC exposed to activator prior to hemolysis. Thus, the activator is located in the cell and appears to act by binding to the inner membrane surface.  相似文献   

6.
Whether La3+ can enter human peripheral blood lymphocytes by the Na+/Ca2+ exchanger or not and the effect of La3+on the Na+/Ca2+ exchanger activity are examined by fura-2 technique. And that whether La3+ is sequestered by intracellular organelles (mainly endoplasmic reticulum and mitochondria) is studied by this method. La3+uptake is obviously stimulated by pre-treating the cells with ouabain and by removing extracellular Na+, and intracellular La3+concentration ([La3+]i) is directly proportional to its extracellular concentration ([La3+]o). But when [La3+]o exceeds 0.4 mmol/L, the 340/380 nm ratio of fluorescence is no longer varied and the maximum [La3+], is 1.5×10-12 mol · L-1. The higher concentration of La3+ (0.1 mmol/L) increases Na+/Ca2+ exchange-mediated calcium influx, but lower concentration (10 μmol/L) appears to block calcium influx. The results also suggest that cytosolic La3+ is transported by the ATP-dependent Ca2+ pump. Intracellular Ca2+ stores are depleted by ionomycin, and then ion  相似文献   

7.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolysates. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2-200 microM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed "high" and "low" affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strength, or membranes prepared by the EDTA (1-10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

8.
The effect of Zn2+ on the O2- generation and change in intracellular Ca2+ concentration ([Ca2+]i) of rat peritoneal neutrophils was studied. Zymosan (serum-treated zymosan (STZ))-induced O2- generation was inhibited by Zn2+ at concentrations as low as 10 microM. A large amount of the inhibition was observed in the absence of extracellular Ca2+ but the inhibition could not be restored by increasing the extracellular Ca2+ concentration, indicating that Zn2+ does not necessarily inhibit the O2- generation competitively with extracellular Ca2+. In the absence of extracellular Ca2+, Zn2+ inhibited STZ-induced transient increase in [Ca2+]i in the concentration range that evoked a marked inhibition in the O2- generation. On the other hand, Zn2+ did not inhibit significantly STZ-induced uptake of 45Ca2+ from extracellular medium by the cells. From these results, it is suggested that Zn2+ inhibits STZ-induced release of Ca2+ from intracellular storage sites, resulting in the suppression of the activation mechanism of neutrophils.  相似文献   

9.
A comprehensive study was performed on electrostatically stabilized aqueous dispersion of lipid A-diphosphate in the presence of bound Ca2+, Mg2+, K+, and Na+ ions at low ionic strength (0.10-10.0-mM NaCl, 25 degrees C) over a range of volume fraction of 1.0 x 10(-4)< or =phi< or =4.95 x 10(-4). These suspensions were characterized by light scattering (LS), quasielastic light scattering, small-angle x-ray scattering, transmission electron microscopy, scanning electron microscopy, conductivity measurements, and acid-base titrations. LS and electron microscopy yielded similar values for particle sizes, particle size distributions, and polydispersity. The measured static structure factor, S(Q), of lipid A-diphosphate was seen to be heavily dependent on the nature and concentration of the counterions, e.g., Ca2+ at 5.0 nM, Mg2+ at 15.0 microM, and K+ at 100.0 microM (25 degrees C). The magnitude and position of the S(Q) peaks depend not only on the divalent ion concentration (Ca2+ and Mg2+) but also on the order of addition of the counterions to the lipid A-diphosphate suspension in the presence of 0.1-microM NaCl. Significant changes in the rms radii of gyration (R2G) 1/2 of the lipid A-diphosphate particles were observed in the presence of Ca2+ (24.8+/-0.8 nm), Mg2+ (28.5+/-0.7 nm), and K+ (25.2+/-0.6 nm), whereas the Na+ salt (29.1+/-0.8 nm) has a value similar to the one found for the de-ionized lipid A-diphosphate suspensions (29.2+/-0.8 nm). Effective particle charges were determined by fits of the integral equation calculations of the polydisperse static structure factor, S(Q), to the light-scattering data and they were found to be in the range of Z*=700-750 for the lipid A-diphosphate salts under investigation. The light-scattering data indicated that only a small fraction of the ionizable surface sites (phosphate) of the lipid A-diphosphate was partly dissociated (approximately 30%). It was also discovered that a given amount of Ca2+ (1.0-5.0 nM) or K+ (100 microM) influenced the structure much more than Na+ (0.1-10.0-mM NaCl) or Mg2+ (50 microM). By comparing the heights and positions of the structure factor peaks S(Q) for lipid A-diphosphate-Na+ and lipid A-diphosphate-Ca2+, it was concluded that the structure factor does not depend simply on ionic strength but more importantly on the internal structural arrangements of the lipid A-diphosphate assembly in the presence of the bound cations. The liquidlike interactions revealed a considerable degree of ordering in solution accounting for the primary S(Q) peak and also the secondary minimum at large particle separation. The ordering of lipid A-diphosphate-Ca2+ colloidal crystals in suspension showed six to seven discrete diffraction peaks and revealed a face-centered-cubic (fcc) lattice type (a=56.3 nm) at a volume fraction of 3.2 x 10(-4)< or =phi< or =3.9 x 10(-4). The K+ salt also exhibited a fcc lattice (a=55.92 nm) at the same volume fractions, but reveals a different peak intensity distribution, as seen for the lipid A-diphosphate-Ca2+ salt. However, the Mg2+ and the Na+ salts of lipid A-diphosphate showed body-centered-cubic (bcc) lattices with a=45.50 nm and a=41.50 nm, respectively (3.2 x 10(-4)< or =phi< or =3.9 x 10(-4)), displaying the same intensity distribution with the exception of the (220) diffraction peaks, which differ in intensity for both salts of lipid A-diphosphate.  相似文献   

10.
A new fluorescent Ca2+ indicator STDIn-AM for detecting [Ca2+]i transients in cultured smooth muscle cells is presented. By making a comparison, the difference between STDIn and fluo-3 is discussed in detail. Using the new Ca2+ indicator, the mechanism of 5-hydroxytryptamino (5-HT) induced intracellular calcium dynamics in stomach fundus smooth muscle cells (SFSMC) of rats is investigated. It is shown that in contrast with fluo-3, STDIn is uniformly distributed in the cytosolic compartment but excluded from the nucleus, when it is transfected into cells. This feature makes it a real cytosol Ca2+ indicator and can reflect changes of cytosol [Ca2+] more accurately than that of fluo-3. In addition, STDIn responds to the [Ca2+]i transients more sensitive and faster than fluo-3. The results also show that, the L-type Ca2+channel inhibitor Mn9202 and the PLC inhibitor Compound 48/80 can significantly inhibit the [Ca2+]i elevation induced by 5-HT, while the PKC inhibitor D-Sphingosine can enhance the effect of  相似文献   

11.
The stabilities of the Ca(2+) and Mg(2+) complexes with 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid) were studied potentiometrically, at 25 degrees . The species ML, MHL, MH(2)L, and M(2)L [L = pyromellitate(4-); M = Ca(2+), Mg(2+)] were found to be present in solution (for Mg(2+) the species MH(3)L was also found). The dependence of the formation constants on ionic strength, and the stability trends of the Ca(2+) and Mg(2+) complexes with carboxylate ligands, are discussed.  相似文献   

12.
We determined intracellular free Ca2+ concentration by fluorescence spectroscopy and the time-resolved measurements of 2-[(2-amino-5-methylphenoxy) methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetic acid, tetrapotassium salt (Quin2) incorporated in suspended mouse leukemia L1210 cells. The paper reports the following two points. (1) Various fluorescence spectrum patterns in cell suspensions dissolved with Quin2 acetoxy methylester were compared with those of the complex in buffer solution containing esterase. (2) The fluorescence lifetime of Quin2 bound to Ca2+ was approx. 4.5-11 times longer (10 +/- 1 ns) than that (1.5 +/- 0.5 ns) of Quin2. The fraction of the long lifetime component was plotted against the concentration of CaCl2 in buffer solution. From the results obtained, it was found that approx. 35 nM Ca2+ was contained in each L1210 cell.  相似文献   

13.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175--4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

14.
A study of competitive adsorption of Ca(2+) and Zn(II) ions at the monodispersed SiO(2)/electrolyte solution interface is presented. Influence of ionic strength, pH, and presence of other ions on adsorption of Ca(2+) and Zn(II) in the mentioned system are investigated. zeta potential, surface charge density, adsorption density, pH(50%), and DeltapH(10-90%) parameters for different concentrations of carrying electrolyte and adsorbed ions are also presented. A high concentration of zinc ions shifts the adsorption edge of Ca(2+) ions adsorbed from solutions with a low initial concentration at the SiO(2)/NaClO(4) solution interface to the higher pH values. This effect disappears with a concentration increase of calcium ions. The presence of Ca(2+) ions in the system slightly affects the adsorption of zinc ions on SiO(2), shifting the adsorption edge toward lower pH values and thereby increasing the adsorption slope.  相似文献   

15.
Many studies on intracellular calcium ([Ca2+](i)) and intracellular pH (pH(i)) have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III) on [Ca2+](i) and pH(i) and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+](i)) and intracellular pH (pH(i)) in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL) increase in [Ca2+](i) and pH(i) of Sf9 cells in presence of Ca2+-containing solution (Hanks) and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+](i), because completely treating Sf9 cells with CdCl(2) (5 mM), a Ca2+ channels blocker, R-III (100 μg/mL) induced a transient elevation of [Ca2+](i) in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pH(i) showed similar changes with that of [Ca2+](i) on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+](i), cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.  相似文献   

16.
This study investigates the stoichiometry and the thermal stability of K(+)- and CO(3)(2)(-)-containing apatites (KCAp's) obtained by the hydrolysis of monetite. The analysis results of the samples after drying reveal that the KCAp's start to lose carbonate at temperatures V(Ca) + CO(3)(2)(-) + V(OH)] and [Ca(2+) + PO(4)(3)(-) <--> K(+) + CO(3)(2)(-)], where V(X) stands for a vacancy in the X-sublattice. Moreover, a small part of the CO(3)(2)(-) ions are presumably incorporated according to [Ca(2+) + 2PO(4)(3)(-) <--> V(Ca) + 2CO(3)(2)(-)]. A comparison of the contributions of these fundamental mechanisms with the results for precipitated Na(+)- and CO(3)(2)(-)-containing apatites shows that no intrinsic coupling whatsoever exists between these mechanisms.  相似文献   

17.
The sarcoplasmic reticulum (SR) Ca(2+)-ATPase, a P-type transmembrane protein, can transport Ca(2+) from the cytoplasmic to the luminal side over other cations specifically. The proposed Ca(2+) entrance channel, composed of the main-chain carbonyl oxygen and side-chain carboxyl oxygen atoms of the amino acids, opens on the enzyme surface, just above the biphospholipid layer membrane-water interface, where Trp residues are frequently found. In this work, the physicochemical nature of Ca(2+) selectivity over Mg(2+) on the surface of the SR Ca(2+)-ATPase has been investigated using the density functional theory (DFT) method. The selection process can be regarded as the first step of the specificity of the enzyme to transport Ca(2+). Subsequently, the specificity of the entrance channel to conduct Ca(2+) over other cations has also been explored. As revealed by thermodynamic analyses, either the aromatic or the aliphatic amino acid residues distributed on the surface of Ca(2+)-ATPase have a bigger affinity to Mg(2+) than to Ca(2+), resulting in a concentration decrease of free Mg(2+) in the local region. Thus, Ca(2+) can transport into the Ca(2+)-entrance channel more easily. Whereafter, for a small quantity of Mg(2+) entering this channel accompanying the Ca(2+) current, the strong electrostatic interactions between Mg(2+) and the ligands will limit the activity of this metal ion, which facilitates the weakly bonded Ca(2+) passing through the channel at a relatively high rate, as suggested by the "sticky-pore" hypothesis. Furthermore, the corresponding theoretical investigations have demonstrated that the increase of the ligand electronegativity can enhance their discrimination between these two cations effectively.  相似文献   

18.
The electric control of cellular functions via Ca2+ was formerly suggested. From this viewpoint, the involvement of a Ca2+ channel was studied using bovine fetal arterial endothelial (BFAE) cells in which P2X4, an ATP-operated and fluid shear stress sensitive Ca2+ channel, exists predominantly. An electric stimulus (sine wave, 10 Hz, 10 VPP, 30 s) caused a marked influx of Ca2+ into BFAE cells from an extracellular solution. The magnitude of the [Ca2+]i change increased with a decrease in the frequency in the range from 100 Hz to 5 Hz. Regarding the pathway of this Ca2+ influx, single-cell imaging and an ATP depletion experiment strongly suggested the involvement of a pathway different from P2X4. This pathway was thought to be a non-specific one, because typical Ca2+ channel blockers, such as verapamil, Gd3+, and Co2+, could not inhibit the Ca2+ influx.  相似文献   

19.
Changes of the intracellular Ca2+ content in human red blood cells (RBCs) in glycerol-containing solutions and after freeze-thawing the cells with glycerol and subsequent deglycerolization were investigated with the Ca2+-sensitive fluorescent dye fluo-4 using fluorescence microscopy. In the glycerol-containing solutions the Ca2+ content increased when compared with a physiological medium (Hepes buffered saline solution (HBSS)). This effect was most likely a result of an inhibition of the Ca2+ pump. After inhibiting the Ca2+ pump using o-vanadate, the Ca2+ uptake was not significantly different in the cells in glycerol-containing and physiological medium. Freeze-thawing and deglycerolization of RBCs resulted in a more pronounced increase in the Ca2+ content. Also in this case, the Ca2+ pump seemed to play a major role.  相似文献   

20.
Calcium Ruby m-Cl (X = H, Y = Cl) is a visible-light excited red-emitting calcium concentration ([Ca2+]) indicator dye (579/598 nm peak excitation/emission) with a side arm for conjugation via EDC or click chemistry. Its large molar extinction and high quantum yield rank it among the brightest long-wavelength Ca2+ indicators. Calcium Ruby is a promising alternative to existing dyes for imaging [Ca2+] in multicolor fluorescence applications or in the presence of yellow-green cellular autofluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号