首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peroxide function of artemisinin has been activated by iron(II)-heme generated in situ from iron(III)-protoporphyrin-IX and glutathione, a biologically relevant reductant. In mild conditions, this reaction produced a high yield (85%) of heme derivatives alkylated at alpha-, beta-, and delta-meso positions by a C4-centered radical derived from artemisinin.  相似文献   

2.
The reductive activation of artemisinin (or artemether) by ferroprotoporphyrin-IX, the prosthetic group of hemoglobin, is able to produce covalent adducts heme-artemisinin in high yield under very mild conditions. This adduct formation, using the natural target of an endoperoxide antimalarial drug, confirms the alkylating ability of this class of antimalarial drugs, which has already been reported when using a synthetic manganese porphyrin.  相似文献   

3.
The stable radicals derived from different compounds were detected in process of styrene autopolymerization. The nitroxide radicals are produced from nitrosocompound, hindered hydroxylamine, nitrophenols and nitroanisoles. The phenoxyl radicals are formed from quinine methides, and naphtoxyl radicals are generated from 2-nitro-1-naphtol. The radicals are identified, the kinetics of their formation and follow-up evolution are studied. These radicals can participate in process of living radical polymerization as the mediators and can effect significantly on kinetics of polymerization and structure of the resulting polymer.  相似文献   

4.
Transparent films containing an iron-porphyrin complex were synthesized by 60Co γ-ray irradiation of aqueous solutions of ironporphyrin complex and a water soluble monomer such as 2-hydroxyethylmethacrylate or 1-vinyl-2-pyrrolidone. The iron(II)porphyrin complex was immobilized in the film by covalent bonding without any denaturation, under anaerobic condition or by protection of the ironporphyrin complex with carbon monoxide. After the irradiation of iron(III)porphyrin, the central iron ion was reduced spontaneously to the ferrous state. The films containing the iron(II)porphyrin adsorbed quantitatively carbon monoxide gas.  相似文献   

5.
6.
DFT calculations were carried out to study heme complexes with diatomic ligand (CO, NO, or O(2)) and trans-imidazole ligand. The optimized electronic ground states of CO, NO, and O(2) adducts are singlet, doublet, and open-shell singlet, respectively. For O(2) adduct, the open-shell singlet is slightly lower in energy than the close-shell singlet. However, important differences are found in optimized structures and vibrational frequencies. Particularly, the trans-imidazole-induced frequency up-shift of the Fe-O(O) stretching mode can be predicted only with the open-shell singlet as ground state. An analysis of normal modes confirms that the up-shifts in the bent (NO and O(2) ) adducts are mainly due to mixing of Fe-X(O) stretching mode with Fe-X-O bending coordinate. Our study of binding mechanism indicates that a secondary source of the upshifts is the diminished weakening of the Fe-X(O) bonds. The Fe-X(O) bond strengths are modulated by σ competition mechanism, which weakens the Fe-X(O) bond and σ-π cooperation mechanism, which only exists in the bent adducts and enforce the Fe-X(O) bond. -  相似文献   

7.
Heme proteins bind the gaseous ligands XO (X = C, N, O) via backbonding from Fe d(pi) electrons. Backbonding is modulated by distal interactions of the bound ligand with the surrounding protein and by variations in the strength of the trans proximal ligand. Vibrational modes associated with FeX and XO bond stretching coordinates report on these interactions, but the interpretive framework developed for CO adducts, involving anticorrelations of nuFeC and nuCO, has seemed not to apply to NO adducts. We have now obtained an excellent anticorrelation of nuFeN and nuNO, via resonance Raman spectroscopy on (N-methylimidazole)Fe(II)TPP-Y(NO), where TPP-Y is tetraphenylporphine with electron-donating or -withdrawing substituents, Y, that modulate the backbonding; the problem of laser-induced dissociation of the axial base was circumvented by using frozen solutions. New data are also reported for CO adducts. The anticorrelations are supported by DFT calculations of structures and spectra. When protein data are examined, the NO adducts show large deviations from the modeled anticorrelation when there are distal H-bonds or positive charges. These deviations are proposed to result from closing of the FeNO angle due to a shift in the valence isomer equilibrium toward the Fe(III)(NO-) form, an effect that is absent in CO adducts. The differing vibrational patterns of CO and NO adducts provide complementary information with respect to protein interactions, which may help to elucidate the mechanisms of ligand discrimination and signaling in heme sensor proteins.  相似文献   

8.
We report a density functional theory study on the heme metabolism in heme oxygenase using iron-hydroperoxo and -oxo models. The activation energies for heme oxidation at the alpha-carbon by the iron-hydroperoxo and -oxo species are calculated to be 42.9 and 39.9 kcal/mol, respectively. These high activation barriers lead us to reconsider the catalytic mechanism of heme oxygenase  相似文献   

9.
The anionic polymerization of methyl methacrylate was carried out in the presence of Bu2Mg/quaternary ammonium salts in toluene at 0°C. It was found that the bulkiness and shape of the salt strongly affect the polydispersity and tacticity of the resulting polymers. Molecular weight distribution is in the range 1.3 <M>w/Mn 4.7.>Tetrahexylammonium chloride causes the most drastic change in the tacticity. The structure of R4MNX, as well as the nature of the metal and the t-BuOLi ligands produce a radical effect on the polymer properties. These initiator components perform their role by changing the microenvironment of the ligated and aggregated growing chains. The results clearly reveal the great potential of the mixed associate or mixed base as strong stereospecific initiator systems.  相似文献   

10.
It is well known that metabolism underlies T cell differentiation and functions. The pathways regulating T cell metabolism and function are interconnected, and changes in T cell metabolic activity directly impact the effector functions and fate of T cells. Thus, understanding how metabolic pathways influence immune responses and ultimately affect disease progression is paramount. Epigenetic and posttranslational modification mechanisms have been found to control immune responses and metabolic reprogramming. Sirtuins are NAD+-dependent histone deacetylases that play key roles during cellular responses to a variety of stresses and have recently been reported to have potential roles in immune responses. Therefore, sirtuins are of significant interest as therapeutic targets to treat immune-related diseases and enhance antitumor immunity. This review aims to illustrate the potential roles of sirtuins in different subtypes of T cells during the adaptive immune response.Subject terms: Acetylation, T cells  相似文献   

11.
Ring-opening polymerizations of cyclobutane adducts of tetracyanoethylene (TCNE) and vinyl ethers (VE) or p-methoxystyrene with tertiary amines are described. The polymerization of the cyclobutane adduct 1a of TCNE and ethyl vinyl ether (EVE) was carried out with 10 mol % of triethylamine in acetonitrile at ambient temperature to afford the alternating copolymer of TCNE and EVE with high molecular weight in good yield under various conditions. Under the optimum condition, the cyclobutane adducts of TCNE and a variety of VEs such as n-butyl vinyl ether, isobutyl vinyl ether, 2,3-dihydrofuran, and 3,4-dihydro-2H-pyran were polymerized to yield similar polymers. Although the cyclobutane adduct 4 of TCNE and p-methoxystyrene did not polymerize under these conditions, the treatment of 4 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in acetonitrile at 60°C gave the polymer. On the basis of the fact that the polymer molecular weight increased rapidly at the initial stage and slowly even after the consumption of all of monomers, we propose that the tertiary amine initiates the chain anionic polymerization of the cyclobutane adduct to afford an ammonium macrozwitterion 3 , which is subjected to the intermolecular nucleophilic substitution with each other in a step polymerization manner. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Recently, it has been reported that curcumin, which is known as a potent antioxidant, acts as a non- stressful and non-cytotoxic inducer of the cytoprotective heme oxygenase (HO)-1. In this study, naturally occurring curcuminoids, such as pure curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), were compared for their potential ability to modulate HO-1 expression and cytoprotective activity in human endothelial cells. All three curcuminoids could induce HO-1 expression and HO activity with differential levels. The rank order of HO activity was curcumin, DMC and BDMC. In comparison with endothelial protection against H2O2-induced cellular injury, cytoprotective capacity was found to be highest with curcumin, followed by DMC and BDMC. Interestingly, cytoprotective effects afforded by curcuminoids were considerably associated with their abilities to enhance HO activity. Considering that the main difference among the three curcuminoids is the number of methoxy groups (none for BDMC, one for DMC, and two for curcumin), the presence of methoxy groups in the ortho position on the aromatic ring was suggested to be essential to enhance HO-1 expression and cytoprotection in human endothelial cells. Our results may be useful in designing more efficacious HO-1 inducers which could be considered as promising pharmacological agents in the development of therapeutic approaches for the prevention or treatment of endothelial diseases caused by oxidative damages.  相似文献   

13.
The synthesis of poly(trimethylene carbonate) via carbene catalyzed ring‐opening polymerization (ROP) was investigated. The N‐heterocyclic carbenes were protected as CO2‐adducts to improve their handling (e.g., carbene generation without base). The influence of catalyst structure, different solvents and microwave radiation on conversion, molecular weight and end groups was investigated to gain an insight into the reaction mechanism. Different NHC structures were investigated for their catalytic activity toward the ROP of trimethylene carbonate. The analytic studies were performed by using NMR spectroscopy, SEC and ESI‐IMS mass spectrometry. It was found that the reaction can be performed in acetonitrile, toluene, THF and CH2Cl2. Synthesis in CH2Cl2 allows the best control over the resulting polymer with regards to polydispersity and molecular weight. Microwave radiation accelerates the reaction at 80 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 820–829  相似文献   

14.
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.  相似文献   

15.
The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200 K, the transition-state enthalpy barrier associated with the fastest (approximately 10 ps) recombination phase is found to be zero and a slower geminate phase (approximately 200 ps) reveals a small enthalpic barrier (approximately 3 +/- 1 kJ/mol). Both of the kinetic rates slow slightly in the myoglobin (Mb) samples above 200 K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (approximately 200 ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature-dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200 K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200 K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (Srajer et al. J. Am. Chem. Soc. 1988, 110, 6656-6670) that primarily attributes the low-temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model, consistent with this prior analysis, is presented that explains a variety of MbNO rebinding experiments, including the dependence of the kinetic amplitudes on the pump photon energy.  相似文献   

16.
A series of novel heptaplatin derivatives were synthesized and evaluated for their ability to inhibit growth of two cancer cell lines: human colon carcinoma cell line HCT-8 and human hepatocarcinoma cell line Bel-7402. Majority of the synthesized compounds demonstrated superior activity against cancer cell lines compared to heptaplatin. Specifically, compounds 5a and 5b (5 µg/mL) had more pronounced efficacy against the HCT-8 cell line while 6b and 6c (0.5 µg/mL) had higher efficacy against Bel-7402 cell line.  相似文献   

17.
The cationic emulsion polymerization of styrene in a batch reactor using different concentrations of dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethyl-ammonium bromide (HDTAB) as cationic surfactants, and 2,2′-azobisisobutyramidine dihydrochloride (AIBA), and 2,2′-azobis (N,N′-dimethyleneisobutyramidine) dihydrochloride (ADIBA) as cationic initiators has been studied. In the preliminary study, the best conditions to obtain stable cationic latexes at high conversions were identified. When the surfactant concentration was above its cmc, latexes with high conversions were achieved for the two cationic surfactants studied (DTAB and HDTAB). Cationic latexes with less coagulum were obtained using ADIBA as cationic initiator due to its superior resistance to hydrolysis. AIBA is hydrolyzed to amide at basic pHs and in this way, the concentration of radicals formed in the aqueous phase decreases. On the other hand, a stronger effect of the particle size on the kinetics of the cationic emulsion polymerization of styrene using HDTAB as cationic surfactant was observed than using DTAB. Furthermore, different kinetic behaviors were observed with the two cationic initiators (ADIBA and AIBA) using HDTAB as cationic surfactant, due to the lower stabilizing effect of the cationic radicals provided by AIBA.  相似文献   

18.
Solvent effects on the redox properties of six Cu(I) complexes used as mediators in atom transfer radical polymerization (ATRP) have been studied using cyclic voltammetry. The six ligands used were tris[2-(dimethylamino)ethyl]amine, N-(n-propyl)-2-pyridylmethanimine, N,N,N',N',N'-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyl-triethylenetetramine, 2,2'-bipyridine, and 1,4,8,11-tetraaza-1,4,8,11-tetramethylcyclotetradecan. The solvents used were DMSO, DMF, MeCN, MeOH, IP, and BuOH. Significant solvent effects were observed and quantitatively analyzed in terms of Kamlet-Taft relationships. The resulting Kamlet-Taft equations were found to successfully describe the solvent effects and could thus be used as tools for the design of ATRP in new solvents. The solvent sensitivity of the different ligands and the nature of the solvent effects are also discussed to some extent.  相似文献   

19.

New tri- and tetraalkyl-substituted o-benzoquinones were synthesized based on 5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2,3-diol derivatives. The new compounds were characterized by spectroscopic and electrochemical methods. The reactivity of o-benzoquinones was evaluated in the photoreduction and initiation of photopolymerization of oligocarbonate dimethacrylate (OCM-2) in the presence of N,N-dimethylcyclohexylamine and in the inhibition of MMA polymerization. The introduction of the methyl substituent into the benzene ring has a weak effect on the inhibitory activity of o-benzoquinone, whereas the (3,5-dimethylpyrazol-1-yl)methyl substituent enhances the inhibitory effect of 4,5-di-tert-alkyl-substituted o-benzoquinone.

  相似文献   

20.
A theoretical study on artemisinin decomposition mechanisms is reported. The calculations have been done at the HF/3-21G and B3LYP/6-31G(d,p) theoretical levels, by using 6,7,8-trioxybicyclo[3.2.2]nonane as the molecular model for artemisinin, and a hydrogen atom, modeling the single electron transfer from heme or Fe(II) in the highly acidic parasite's food vacuole, as inductor of the initial peroxide bond cleavage. All relevant stationary points have been characterized, and the appearance of the final products can be explained in a satisfactory way. Several intermediates and radicals have been found as relatively stable species, thus giving support to the current hypothesis that some of these species can be responsible for the antimalarial action of artemisinin and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号