首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Majorana nature of neutrinos may only be experimentally verified via lepton-number violating processes involving charged leptons. We explore the Delta L = 2 like-sign dilepton production at hadron colliders to search for signals of Majorana neutrinos. We find significant sensitivity for resonant production of a Majorana neutrino in the mass range of 10-80 GeV at the current run of the Tevatron with 2 fb(-1) integrated luminosity and in the range of 10-400 GeV at the CERN LHC with 100 fb(-1).  相似文献   

2.
We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W~±→e~±e~±μ~?ν and μ~±μ~± e~?ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count(CC) and Multi-Variate Analysis(MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass m N =20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb~(-1), sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings |U_(Ne)|~2~|U_(Nμ)|~2~10~(-6), while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10~(-5).  相似文献   

3.
The experimental rate of neutrinoless double beta decay can be saturated by the exchange of virtual sterile neutrinos, that mix with the ordinary neutrinos and are heavier than 200 MeV. Interestingly, this hypothesis is subject only to marginal experimental constraints, because of the new nuclear matrix elements. This possibility is analyzed in the context of the Type I seesaw model, performing also exploratory investigations of the implications for heavy neutrino mass spectra, rare decays of mesons as well as neutrino-decay search, LHC, and lepton flavor violation. The heavy sterile neutrinos can saturate the rate only when their masses are below some 10 TeV, but in this case, the suppression of the light-neutrino masses has to be more than the ratio of the electroweak scale and the heavy-neutrino scale; i.e., more suppressed than the naive seesaw expectation. We classify the cases when this condition holds true in the minimal version of the seesaw model, showing its compatibility (1) with neutrinoless double beta rate being dominated by heavy neutrinos and (2) with any light neutrino mass spectra. The absence of excessive fine-tunings and the radiative stability of light neutrino mass matrices, together with a saturating sterile neutrino contribution, imply an upper bound on the heavy neutrino masses of about 10 GeV. We extend our analysis to the Extended seesaw scenario, where the light and the heavy sterile neutrino contributions are completely decoupled, allowing the sterile neutrinos to saturate the present experimental bound on neutrinoless double beta decay. In the models analyzed, the rate of this process is not strictly connected with the values of the light neutrino masses, and a fast transition rate is compatible with neutrinos lighter than 100 meV.  相似文献   

4.
The lepton-number-violating decays of singly-charged Higgs bosons H± are investigated in the minimal type-(Ⅰ+Ⅱ) seesaw model with one SU(2)L Higgs triplet Δ and one heavy Majorana neutrino N1 at the TeV scale.We find that the branching ratios B(H+ → lα+ ν)(for α = e,μ,τ) depend not only on the mass and mixing parameters of three light neutrinos νi(for i=1,2,3) but also on those of N1.Assuming that the mass of N1 lies in the range of 200 GeV to 1 TeV,we figure out the generous interference bands for the contributions of νi and N1 to B(H+ →lα+ ν).We illustrate some salient features of such interference effects by considering three typical mass patterns of νi,and show that the relevant Majorana CP-violating phases can affect the magnitudes of B(H+ →l+αν) in this parameter region.  相似文献   

5.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

6.
A nonzero neutrino mass may be a sign of new physics beyond the standard model (SM). To explain the small neutrino mass, we can extend the SM using right-handed Majorana neutrinos in a low-scale seesaw mechanism, and the CP violation effect can be induced due to the CP phase in the interference of heavy Majorana neutrinos. The existence of heavy Majorana neutrinos may lead to lepton number violation processes, which can be used to search for the signals of heavy Majorana neutrinos. In this paper, we focus on the CP violation effect related to two generations of heavy Majorana neutrinos at \begin{document}$ 15 $\end{document} GeV \begin{document}$ <m_{N_1}< 70 $\end{document} GeV in the pair production of W bosons and rare decays. It is valuable to investigate Majorana neutrino production signals and the related CP violation effects in rare W boson decays at future lepton colliders.  相似文献   

7.
The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff–Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff–Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results.  相似文献   

8.
About 200 and 60 candidates for electron neutrino and antineutrino interactions, respectively, have been analyzed in the heavy liquid bubble chamber Gargamelle exposed to the CERN PS neutrino beam. Evidence for scaling has been found for these interactions, with slopes of the cross sections in good agreement with those obtained for muon neutrino and antineutrino events in the same chamber. No evidence appears for oscillations of neutrinos or antineutrinos, which would induce in the present experiment an excess of electron or positron events. The corresponding limits are given as functions of the mixing parameter, for the finite mass Majorana neutrinos. The possibility of a multiplicative law for the lepton number has also been investigated. A search for isolated electron-positron pairs revealed no excess in the forward direction, in contradiction to the expectation for muonic neutrino and antineutrino decays. The corresponding limits on the c.m. half lifetimes are given.  相似文献   

9.
《Nuclear Physics B》2004,692(3):303-345
We study the scenario of thermal leptogenesis in which the leptonic asymmetries are resonantly enhanced through the mixing of nearly degenerate heavy Majorana neutrinos that have mass differences comparable to their decay widths. Field-theoretic issues arising from the proper subtraction of real intermediate states from the lepton-number-violating scattering processes are addressed in connection with an earlier developed resummation approach to unstable particle mixing in decay amplitudes. The pertinent Boltzmann equations are numerically solved after the enhanced heavy-neutrino self-energy effects on scatterings and the dominant gauge-mediated collision terms are included. We show that resonant leptogenesis can be realized with heavy Majorana neutrinos even as light as ∼1 TeV, in complete accordance with the current solar and atmospheric neutrino data.  相似文献   

10.
We discuss the prospects of studying lepton number violating processes in order to identify Majorana neutrinos from low scale seesaw mechanisms at lepton-proton colliders. In particular, we consider the scenarios of colliding electrons with LHC energy protons and, motivated by the efforts towards the construction of a muon collider, the prospects of muon-proton collisions. We find that present constraints on the mixing of the Majorana neutrinos still allow for a detectable signal at these kind of facilities given the smallness of the Standard Model background. We discuss possible cuts in order to further increase the signal over background ratio and the prospects of reconstructing the neutrino mass from the kinematics of the final state particles.  相似文献   

11.
Constraints on the heavy sterile neutrino mixing angles are studied in the framework of a minimal supersymmetric SO(10) model with the use of the double see-saw mechanism. A new singlet matter in addition to the right-handed neutrinos is introduced to realize the double see-saw mechanism. The light Majorana neutrino mass matrix is, in general, given by a combination of those of the singlet neutrinos and the active neutrinos. The minimal SO(10) model is used to give an example form of the Dirac neutrino mass matrix, which enables us to predict the masses and the mixing angles in the enlarged 9×9 neutrino mass matrix. Mixing angles between the light Majorana neutrinos and the heavy sterile neutrinos are shown to be within the LEP experimental bound on all ranges of the Majorana phases.  相似文献   

12.
The left-right symmetric model with doublet and bi-doublet Higgs scalars can accommodate linear, inverse or double seesaw for generating small neutrino masses in the presence of three singlet fermions. If the singlet fermions have small Majorana masses, they can form three pairs of quasi-degenerate Majorana fermions with three right-handed neutrinos. The decays of the quasi-degenerate Majorana fermions can realize the resonant leptogenesis. Alternatively, the right-handed neutrinos can obtain seesaw suppressed Majorana masses if the singlet fermions are very heavy. In this case leptogenesis, with or without resonant effect, is allowed in the decays of the right-handed neutrinos.  相似文献   

13.
The observation of neutrino oscillations requires new physics beyond the standard model (SM).A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but preserving its SU(2)L x U(1)y gauge symmetry.The overall neutrino mass matrix M turns out to be a symmetric (p+q) x (p+q) matrix.Given p>q,the rank of M is in general equal to 2q,corresponding to 2q non-zero mass eigenvalues.The existence of (p-q) massless left-handed Majorana neutrinos is an exact consequence of the model,independent of the usual approximation made in deriving the Type-I seesaw relation between the effective p x p light Majorana neutrino mass matrix M,and the q x q heavy Majorana neutrino mass matrix MR.In other words,the numbers of massive left- and right-handed neutrinos are fairly matched.A good example to illustrate this "seesaw fair play rule"is the minimal seesaw model with p = 3 and q = 2,in which one masslese neutrino sits on the unbalanced seesaw.  相似文献   

14.
The SO(3) gauge extension of SM, which is proposed to present a successfulexplanation for the observed small masses of neutrino and the nearly tri-bimaximal neutrino mixing, predicted the vector-like SO(3) triplet Majorana neutrinos and SUL(2) double Higgs bosons. In this work we calculate branching ratios of the charged lepton flavor violating decays lIlJV (V=γ,Z) induced by these Majorana neutrinos and Higgs bosons. We find that under the model parameters constrained by experimental bounds on the decays Z→lIlJ, the branching ratio of decays lI→lJγ can be up to 10-10, which may be accessible at the future experiments.  相似文献   

15.
We analyze possible lepton-flavor-violating decays of the Z0 particle in a minimal extension of the standard model, in which one right-handed neutral field for each family has been introduced. Such rare leptonic decays are induced by Majorana neutrinos at the first electroweak loop level and are generally not suppressed by the ordinary “see-saw” mechanism. In particular, we find that experimental bounds on branching ratios of the order of 10−5–10−6 attainable at LEP may impose constraints on lepton-flavor-mixing parameters and the masses of the heavy Majorana neutrinos.  相似文献   

16.
We study the flavour-changing neutral currents in the case that the fourth-generation neutrino exists and the known three left-handed neutrino masses are at the experimental limits of the direct measurements. The fourth-generation neutrino has the mass of order a few ten GeV and the flavour-changing processes of the heavy neutrinos are expected to be observed onZ 0 ine + e ? collisions. The heavy fourth-generation neutrino is significant to reveal the nature of the neutrino; Dirac or Majorana, the see-saw mechanism and the right-handed scale.  相似文献   

17.
Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in 76Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters. The text was submitted by the author in English.  相似文献   

18.
The possibility of detecting single heavy Dirac and/or Majorana neutrinos at LEP II is investigated for heavy neutrino masses in the range . We study the process as a clear signature for heavy neutrinos. Numerical estimates for cross sections and distributions for the signal and the background are calculated and a Monte Carlo reconstruction of final state particles after hadronization is presented. Received: 20 September 2001 / Published online: 12 November 2001  相似文献   

19.
The masses and couplings of heavy unstable right-handed Majorana neutrinos can be constrained using existing and expected future results from both accelerator and astrophysics experiments. In particular we examine limits on rare decay modes of particles containing s, c, and b quarks as well as the τ lepton and interpret these in terms of a hypothetical massive neutrino. In addition, cosmological limits result from a consideration of the nucleosynthesis epoch in the early universe.  相似文献   

20.
The neutrinoless double-beta decay is not allowed in the Standard Model (SM) but it is allowed in most Grand Unified Theories (GUTs). The neutrino must be a Majorana particle (identical with its antiparticle) and must have a mass to allow the neutrinoless double-beta decay. Apart of one claim that the neutrinoless double-beta decay in 76Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for the neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号