首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new compound, LiI(3-hydroxypropionitrile)(2), is reported here. According to its single-crystal structure (C2/c), this compound has 3-D transporting paths for iodine. Further ab initio calculation shows that the activation energy for diffusion of iodine (0.73 eV) is much lower than that of lithium ion (8.39 eV) within the lattice. Such a mono-ion transport feature is favorable as solid electrolyte to replace conventional volatile organic liquid electrolytes used in dye-sensitized solar cells (DSSC). LiI and 3-hydroxypropionitrile (HPN) can form a series of solid electrolytes. The highest ambient conductivity is 1.4 x 10(-)(3) S/cm achieved for LiI(HPN)(4). However, it tends to form large crystallites and leads to poor filling and contact within porous TiO(2) electrodes in DSSC. Such a drawback can be greatly improved by introducing micrometer-sized and nanosized SiO(2) particles into the solid electrolyte. It is helpful not only in enhancing the conductivity but also in improving the interfacial contact greatly. Consequently, the light-to-electricity conversion efficiency of 5.4% of a DSSC using LiI(HPN)(4)/15 wt % nano-SiO(2) was achieved under AM 1.5 simulated solar light illumination. Due to the low cost, easy fabrication, and relatively high conversion efficiency, the DSSC based on this new solid-state composite electrolyte is promising for practical applications.  相似文献   

2.
Cross-linked gel polymer electrolytes containing aluminum oxide nanoparticles are successfully prepared using in-situ chemical cross-linking at room temperature after injection of the gel precursor into a dye-sensitized solar cell (DSSC). This makes it possible to directly solidify the electrolyte in the cell without leakage of solvent and to maintain close interfacial contact with the porous TiO2 electrode. The quasi-solid-state DSSC assembled with gel polymer electrolyte containing 20 wt.% Al2O3 particles yields an overall conversion efficiency of 5.25% under AM 1.5 illumination at 100 mW cm− 2.  相似文献   

3.
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite‐free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg?1) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx. Herein, we demonstrate the first reversible Al/S battery in ionic‐liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid‐state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid‐state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.  相似文献   

4.
It was observed that the ionic conductivity of the solid-state electrolyte LiI/3-hydroxypropionitrile (HPN) = 1:4 (molar ratio) decreased dramatically with increasing iodine (I(2)) concentration, which differs from the conduction behavior of the Grotthuss transport mechanism observed in liquid or gel electrolytes. The short-circuit photocurrent density (J(sc)) of the dye-sensitized solar cell (DSSC) based on this electrolyte system increases with increasing I(2) concentration until LiI/I(2) is 1:0.05 (molar ratio). Beyond this limitation, the J(sc) decreases. At low I(2) concentrations (I(2)/LiI < or = 0.05), the J(sc) is mainly affected by the diffusion of I(3)(-). An increase of the I(2) concentration leads to the enhancement of the diffusion of I(3)(-) and an increase of the J(sc). At high I(2) concentrations (I(2)/LiI > 0.05), the factors, including the increased light absorption by the I(3)(-), the increased recombination of electrons at the photoanode with I(3)(-), and the reduced ionic conductivity of the electrolyte, lead to a decrease of J(sc). At the same time, the open-circuit voltage (V(oc)) of the DSSC decreases monotonically with the ratio of I(2)/LiI due to increased dark current in the DSSC. The increased absorption of visible light by the electrolyte, the enhanced dark current, and the reduced ionic conductivity of the electrolyte contribute to the performance variation of the corresponding solid-state DSSC with increasing I(2) concentration.  相似文献   

5.
The molecular structure of aluminum triiodide was investigated in the gas phase by high-temperature gas-phase electron diffraction and high-level computations. The geometries of monomeric, AlI3, and dimeric, Al2I6, molecules were determined from two separate experiments carried out under carefully controlled conditions to prevent decomposition. This is the first experimental determination of the dimer structure by modern techniques. The computed geometrical parameters strongly depend on the applied methods and basis sets as well as on core-valence correlation effects. The electron diffraction thermal average bond length, r(g), of AlI3 at 700 K is 2.448(6) A; while those of Al2I6 at 430 K are 2.456(6) A (terminal) and 2.670(8) A (bridging). The equilibrium geometry of the monomer molecule is planar with D(3h) symmetry. The dimer molecule is extremely floppy, and it is difficult to determine the symmetry of its equilibrium geometry by computation, as it is sensitive to the applied methods. MP2 and CCSD calculations find the Al2I6 molecule puckered with C(2v) symmetry (although with a very small barrier at planarity), while density functional methods give a structure with a planar central ring of D(2h) symmetry. Comparison of the computed vibrational frequencies with the gas-phase experimental ones favors the D(2h) symmetry structure.  相似文献   

6.
The exfoliated montmorillonite (exMMT) nanoplatelets that carry negative charges are capable of adsorbing 1-methyl-3-propyl-imidazolium cations to form a gel-type ionic liquid-based electrolyte system for dye-sensitized solar cell (DSSC). Interestingly, it also increases the power conversion efficiency of DSSC from 6.58% to 7.77% at full sun. The increased efficiency is attributed to the decreased resistance of gel electrolyte system and enhanced reduction reaction rate at the counter electrode, both of which are related to the two-dimensional electrolyte nature of exMMTs that repel the I(-)/I(3)(-) redox couples toward their major conduction pathway.  相似文献   

7.
综述了本研究小组近年来用于染料敏化太阳电池中聚合物电解质的研究概况.设计合成了几类性能优良的聚合物电解质,较好地改进了液体电解质染料敏化太阳电池(DSSC)的使用稳定性,研究结果具有实际应用的价值,并提出了此领域研究今后的发展方向.  相似文献   

8.
Innovation in electronic devices has created a demand for energy storage systems. Recently, rechargeable Al-ion batteries (AIBs) have received significant attention owing to their high gravimetric capacity and low cost. In this study, the electrochemical performances of pristine, etched, and electropolished Al negative electrodes via surface modification were investigated to determine their efficiency in AIBs. Herein, pristine, etched, and electropolished Al acted as the negative electrodes (anodes), and pure graphite and aluminum chloride (AlCl3)/1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) were used as the positive electrode (cathode) and ionic liquid electrolyte, respectively. This new type of electropolished Al-based battery cell shows good cyclability and high performance compared to pristine and etched Al electrodes. The electropolished Al electrode stabilized at an average capacity of 50 mAh g−1 over 10,000 cycles at an ultrafast current rate of 5,000 mA g−1.  相似文献   

9.
Dye-sensitized solar cells (DSSCs) were fabricated using multiwalled carbon nanotube (MWCNT)-TiO(2) nanocomposite as a light scattering layer. Morphology of the MWCNT-TiO(2) film was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM and TEM images demonstrate that MWCNTs and TiO(2) nanoparticles can be dispersed with chitosan. Internal resistance in the DSSC was characterized by electrochemical impedance spectroscopy (EIS). EIS results reveal a decrease in the charge resistance of electrolyte/dye/MWCNT-TiO(2)/TiO(2) interface with increasing MWCNT content up to 3 wt% which leads to an improvement in the photovoltaic performance. Compare with a nanocrystalline TiO(2) single-layer cell, the DSSC based on the MWCNT (3 wt%)-TiO(2)/TiO(2) bilayer structure photoelectrode shows ~100% increase in solar-to-electric energy conversion efficiency, which is attributed to the inclusion of MWCNTs in TiO(2) matrix.  相似文献   

10.
In this study, photovoltaic (PV) properties of dye‐sensitized solar cells (DSSCs) incorporated with graphene oxide nanosheet‐polyaniline (GOS‐PANI) nanohybrid/poly(ethylene oxide) (PEO) blend gel electrolytes were investigated. Chemical structure and composition of GOS‐PANI nanohybrids were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. The images of transmission electron microscopy revealed that PANI nanorods were anchored to the single‐layered GOS for the GOS‐PANI nanohybrids. Ionic conductivities of the GOS‐PANI/PEO–based gel electrolytes were measured using a conductivity meter. The electrochemical catalytic activities of the GOS‐PANI nanohybrids were determined through cyclic voltammetry. These GOS‐PANI nanohybrids were served as the extended electron transfer materials and catalyst for the electrochemical reduction of I3?. Due to the enhancement of the ionic conductivity and electrochemical catalytic activity of the gel electrolyte, better PV performance was observed for the DSSCs based on the GOS‐PANI containing electrolytes as compared to the pristine PEO electrolyte‐based DSSC sample. Moreover, PV performances of the GOS‐PANI/PEO–based DSSCs were closely related to the PANI content of GOS‐PANI nanohybrids. The highest photo‐energy conversion efficiency (5.63%) was obtained for an optimized GOS‐PANI/PEO (5:95, w/w) blend gel electrolyte‐based DSSC sample. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 321–332  相似文献   

11.
报道了一种新型染料敏化太阳电池电解质添加剂——N-十六烷基吡啶碘(N-CPI).往电解质中添加0.02MN-CPI,能同时提高染料敏化太阳电池(DSSC)的短路电流和开路电压,光电转换效率也由4.429%提高到6.535%,增幅高达47.55%,由此可见,N-CPI是一种高效电解质添加剂.N-CPI这种功能来源于其双极性基团的特殊分子结构,这种结构使N-CPI在电解质中如表面活性剂那样形成有序分布,影响I-/I3-的扩散和氧化还原性能,进而影响DSSC的光电性能.  相似文献   

12.
以V2O5为原料,利用电解还原方法制备三价钒电解液,此电解液蒸发结晶后得到的V2(SO4)3固体,可组装成固体钒电池。固体钒电池在5 mA/cm2时电池的能量效率可达94.00%,比液流钒电池高出6%;其能量密度为54.18 Wh/kg,是液流钒电池的两倍。充放电实验结果表明,所制备V2(SO4)3固体电化学活性高,所用固体钒电池有望应用于移动电源和动力汽车。  相似文献   

13.
The present work develops a new type of solvent-free copolymer electrolyte based on polysiloxane for dye-sensitized solar cells (DSSCs). The electrolyte is characterized by conductivity measurements, hydrogen-1 nuclear magnetic resonance spectroscopy, rheology, and DSSC performance. Repeated units of the ethylene oxide on methylhydrosiloxane show plasticizing effects and enhanced durability of the DSSCs. DSSC employing the polysiloxane electrolytes show no energy conversion efficiency decay after 16 days test at room temperature and yields a conversion efficiency of 1.5% during long-term stability measurement at 90 °C under white light irradiation of 100 mW cm−2. The new solvent-free polysiloxane copolymer electrolyte can be good candidate for next generation DSSC.  相似文献   

14.
In this study, we developed a novel cerium/ascorbic acid/iodine active species to design a redox flow battery (RFB), in which the cerium nitrate hexahydrate [Ce(NO3)3·6H2O] was used as a positive Ce3+/Ce4+ ion pair, and the potassium iodate (KIO3) containing ascorbic acid was used as a negative I2/I ion pair. In order to improve the electrochemical activity and to avoid cross-contamination of the redox pair ions, the electroless plating and sol–gel method were applied to modify the carbon paper electrode and the Nafion 117 membrane. The electrocatalytic and electrochemical properties of the composite electrode using methanesulfonic acid as a supporting electrolyte were assessed using the cyclic voltammetry (CV) test. The results showed that the Ce (III)/Ce (IV) active species presented a symmetric oxidation/reduction current ratio (1.09) on the C–TiO2–PdO composite electrode. Adding a constant amount of ascorbic acid to the iodine solution led to a good reversible oxidation/reduction reaction. Therefore, a novel Ce/ascorbic acid/I RFB was developed with C–TiO2–PdO composite electrodes and modified Nafion 117–SiO2–SO3H membrane using the staggered-type flow channel, of which the energy efficiency (EE%) can reach about 72%. The Ce/ascorbic acid/I active species can greatly reduce the electrolyte cost compared to the all-vanadium redox flow battery system, and it therefore has greater development potential.  相似文献   

15.
Pichandi Mahadevi 《合成通讯》2020,50(15):2237-2249
Abstract

For the requirement of clean and efficient energy, research toward the improvement of solar energy is increased because it directly converts the sunlight into electrical energy leaving no harmful effect on the environment. Dye-sensitized solar cells (DSSCs) are one of the best alternative approaches to conventional solar cells. The photosensitizer is one of the important components in DSSC and plays a key role to initiate the electrochemical process for electricity production by harvesting visible light. The power conversion efficiency of DSSC is typically based on the dye/sensitizer which is coated on the porous semiconductor TiO2 film. Schiff base metal complexes have potential photosensitizing behavior, due to their photophysical properties. This article presents the current development attained in the designing and synthesis of Schiff base metal complexes and their application as photosensitizers and also co-sensitizers in dye-sensitized solar cells, and recent developments on the DSSC using Schiff based metal complexes.  相似文献   

16.
In this study, an aluminum (Al) foil used for lithium ion battery packaging film was treated with titanium (Ti)/zirconium (Zr) solution containing hexafluorotitanic acid and hexafluorozirconic acid using tannic acid as a colorant and metavanadate as an accelerator, respectively, and a golden conversion coating was successfully deposited on the surface of Al foil. The morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the hydrophilicity was assessed by contact angle measurement. The effect of Ti/Zr treatment on the adhesion properties of Al foil was evaluated by T-peeling test and compared with that of traditional chromate-phosphate treatment. The results show that tannic acid contributes to the formation of the golden coating, and metavanadate accelerates the formation of the conversion coating. The results also indicate that the Ti/Zr-based conversion coating is mainly composed of Al2O3, Al (OH)3, AlF3, TiO2/ZrO2, NH4VO3, and V2O5. The Ti/Zr treatment cannot only improve the heat-sealing strength, but also the T-peeling strength by approximately 12 times compared with that of untreated Al foil. Thus, Ti/Zr treatment has the potential to replace the traditional chromate conversion treatment.  相似文献   

17.
ZnS capped CdSe quantum dots embedded in PEO:KI:I2 polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity (σ) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve.  相似文献   

18.
Dye-sensitized solar cells (DSCs) using solid-state hole conductor, poly(3,4-ethylenedioxythiophene) (PEDOT), were fabricated using in-situ photoelectrochemical polymerization giving short-circuit photocurrent density of 3.20 mA cm-2, open-circuit voltage of 0.77 V, and fill factor of 0.50, and the resulting overall conversion efficiency of 1.25% on average under air mass 1.5 conditions. Furthermore, the electron transport properties of the DSCs based on PEDOT (PEDOT/DSCs) were analyzed using light intensity modulation induced photocurrent and photovoltage decay (SLIM-PCV) measurements and electrochemical impedance spectroscopy (EIS) measurements, and then compared to those of the DSCs based on organic liquid electrolyte containing I-/I3- as redox couple (liquid iodide/iodine electrolyte-DSCs, iodide/DSCs for short). The effective filling of PEDOT in the mesopores of dyed TiO2 layers is an important key to achieve the respectable conversion efficiency of PEDOT/DSCs that is comparable with iodide/DSCs.  相似文献   

19.
采用具有紫外光区吸收的金属配合物Cd(phen)2(NO3)(NO2)和N719对ZnO光阳极进行共敏化.结果表明,配合物能够对ZnO光阳极进行共敏化,同时被电解液还原再生,共敏化增加电池对光的吸收,电池光电流密度增加63%,共敏化降低了电池各个界面电阻,有利于电子在界面的传输,电池的光电转换效率提高了37%.  相似文献   

20.
随着人类对能源的使用与存储需求不断增加,高能量密度和高安全性能的二次锂电池体系正在被不断地开发与完善.深入理解充放电过程中锂电池内部电极/电解质界面的电化学过程以及微观反应机理,有利于指导电池材料的优化设计.原位电化学原子力显微镜将原子力显微镜的高分辨表界面分析优势与电化学反应装置相结合,能够在电池运行条件下实现对电极/电解质界面的原位可视化研究,并进一步从纳米尺度上揭示界面结构的演化规律与动力学过程.本文总结了原位电化学原子力显微镜在锂电池电极过程中的最新研究进展,主要包括基于转化型反应的正极过程、固体电解质中间相的动态演化以及固态电池界面演化与失效分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号