首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The title compound [systematic name: 5‐amino‐3‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)thiazolo[4,5‐d]pyrimidine‐2,7‐(3H,6H)‐dione], C10H12N4O5S, exhibits a syn glycosylic bond conformation, with a torsion angle χ of 61.0 (3)°. The furanose moiety adopts the N‐type sugar pucker (3T4), with P = 33.0 (5)° and τm = 15.1 (1)°. The conformation at the exocyclic C4′—C5′ bond is +ap (trans), with the torsion angle γ = 176.71 (14)°. The extended structure is a three‐dimensional hydrogen‐bond network involving O—H...O and N—H...O hydrogen bonds.  相似文献   

2.
The crystal structure of a prospective olefin catalyst, namely {2‐[1‐acetyl‐5‐(2‐hydroxy­phenyl)‐4‐phenyl‐1,2,4‐di­aza­phospholan‐3‐yl]­phenyl acetate‐κP}chloro­(η4‐cyclo­octa‐1,5‐diene)rhodium(I) di­chloro­methane solvate, [RhCl(C8H12)(C24H23N2O4P)]·CH2Cl2, has been determined at 173 K. The five‐membered heterocycle of the phosphine ligand is in a slightly distorted twist conformation. An intramolecular N1—H1⃛Cl1 hydrogen bond contributes to the adopted conformation and may additionally participate in secondary interactions with substrates during catalysis.  相似文献   

3.
The title compound, C17H16N2O3, is an antagonist for AMPA/kainate receptors. The mol­ecule has its seven-membered oxa­diazo­le ring in a boat conformation. Asymmetry of the two methoxy bond angles is evident, with (Me)O—C—C angles of 115.45 (12) and 124.78 (13)°, and 114.67 (12) and 125.31 (12)°. A centrosymmetric dimer involving the HN—CO moieties, with an N⃛O distance of 2.876 (2) Å, graph set R(8), is further linked into chains through methoxy Csp3—H⃛N hydrogen bonds, with a C⃛N distance of 3.418 (2) Å.  相似文献   

4.
The title compound, C9H12N6O3, shows a syn‐glycosylic bond orientation [χ = 64.17 (16)°]. The 2′‐deoxyfuranosyl moiety exhibits an unusual C1′‐exo–O4′‐endo (1T0; S‐type) sugar pucker, with P = 111.5 (1)° and τm = 40.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche), with γ = 64.4 (1)°. The two‐dimensional hydrogen‐bonded network is built from intermolecular N—H...O and O—H...N hydrogen bonds. An intramolecular bifurcated hydrogen bond, with an amino N—H group as hydrogen‐bond donor and the ring and hydroxymethyl O atoms of the sugar moiety as acceptors, constrains the overall conformation of the nucleoside.  相似文献   

5.
The reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine produced an unexpected product of formula C12H15N3O, consisting of a carbox­amide moiety joined to a substituted pyrazoline ring at one of the N atoms. The pyrazoline ring adopts a flat‐envelope conformation and the substituted phenyl ring is oriented almost perpendicular to the heterocycle. The carbonyl O atom has partial anionic character as a result of the transfer of π density from the two adjacent sp2 N atoms and is involved in an intermolecular hydrogen bond with the amide group.  相似文献   

6.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

7.
In the title compound, 4‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13FN4O3, the conformation of the glycosyl bond lies between anti and high anti [χ = −101.1 (3)°]. The furanose moiety adopts the S‐type sugar pucker (2T3), with P = 164.7 (3)° and τ = 40.1 (2)°. The extended structure is a three‐dimensional hydrogen‐bond network involving a C—H⋯F, two N—H⋯O and two O—H⋯O hydrogen bonds.  相似文献   

8.
The 2‐propynyl group in the title compound, C17H22O10, adopts an exoanomeric conformation, with the acetylenic group gauche with respect to position C1. Comparison of 13C NMR chemical shifts from solution and the solid state suggest that the acetylenic group also adopts a conformation anti to C1 in solution. The pyranose ring adopts a 4C1 conformation. Of the three secondary O‐acetyl groups, that on position O4, flanked by two equatorial groups, adopts a syn conformation, in agreement with recent generalizations [González‐Outeiriño, Nasser & Anderson (2005). J. Org. Chem. 70 , 2486–2493]. The acetyl group on position O3 adopts a gauche conformation, also in agreement with the recent generalizations, but that on position O2 adopts a syn conformation, not in agreement with the recent generalizations.  相似文献   

9.
N,N′-bis(3,5-dichlorosalicylidene)-2-hydroxy-1,3-diamino-2-propan (C17H14Cl4N2O3) was synthesized and its crystal structure determined. It crystallizes in the monoclinic space group, C2/c, with a=29.734(8), b=4.541(1), c=14.694(2) Å, β=115.85(2), R(F2)=0.048 for 1704 independent reflections. The title compound has a twofold axis passing through the central C9 atom. The intramolecular hydrogen bond occurs between the pairs of atoms N1 and O1 [2.648(5) Å] and the hydrogen atom is essentially being bonded to the nitrogen atom. There is no intermolecular proximity between molecules. Conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The optimized geometry of the molecular structure corresponding to the non-planar conformation is the most stable conformation in the theoretical calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded steric interactions.  相似文献   

10.
Treatment of 2‐ethynylanilines with P(OPh)3 gives either 2,2‐diphenoxy‐2‐λ5‐phosphaquinolines or 2‐phenoxy‐2‐λ5‐phosphaquinolin‐2‐ones under transition‐metal‐free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the N?PV double bond and its potential for delocalization within a cyclic π‐electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2‐quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40 %, Stokes shifts of 50–150 nm, and emission wavelengths of 380–540 nm. The phosphaquinolin‐2‐ones possess one of the strongest solution‐state dimerization constants for a D–A system (130 M ?1) owing to the close proximity of a strong acceptor (P?O) and a strong donor (phosphonamidate N? H), which suggests that they might hold promise as new hydrogen‐bonding hosts for optoelectronic sensing.  相似文献   

11.
The title compound [systematic name: 4‐amino‐5‐cyano‐1‐(β‐d ‐ribofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine hemihydrate], C12H13N5O4·0.5H2O, is a regioisomer of toyocamycin with the ribofuranosyl residue attached to the pyrimidine moiety of the heterocycle. This analogue exhibits a syn glycosylic bond conformation with a χ torsion angle of 57.51 (17)°. The ribofuranose moiety shows an envelope C2′‐endo (2E) sugar conformation (S‐type), with P = 161.6 (2)° and τm = 41.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a γ torsion angle of 54.4 (2)°. The crystal packing is stabilized by intermolecular O—H...O, N—H...N and O—H...N hydrogen bonds; water molecules, located on crystallographic twofold axes, participate in interactions. An intramolecular O—H...N hydrogen bond stabilizes the syn conformation of the nucleoside.  相似文献   

12.
Conclusions An x-ray diffraction structural analysis was carried out for crystal and molecular structures of a new nexacoordinated phosphorus compound, F4PC(R1R2)N(H)C(NR3 2)NH (R1=Me, R2=i-Bu, R3=i-Pr). The five-membered heterocycle in this compound has envelope conformation with puckering at the octahedrally coordinated phosphorus atom.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 936–937, April, 1988.  相似文献   

13.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐benzotriazole, C11H14N4O3, the conformation of the N‐glycosidic bond is in the high‐anti range [χ = ?77.1 (4)°] and the 2′‐deoxy­ribo­furan­ose moiety adopts a 2′‐­endo (2E) sugar puckering. The 5′‐hydroxyl group is disordered and has conformations ap with γ = 171.1 (3)° [occupation of 61.4 (3)%] and +sc with γ = 52.4 (6)° [occupation of 38.6 (3)%]. The nucleobases are stacked in the crystal state.  相似文献   

14.
In the title compound, 2‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuran­osyl)‐3,7‐dihydro­pyrrolo[2,3‐d]pyrimidin‐4‐one, C11H14N4O4, the N‐glycosylic bond torsion angle, χ, is anti [−106.5 (3)°]. The 2′‐deoxy­ribofuran­osyl moiety adopts the 3T4 (N‐type) conformation, with P = 39.1° and τm = 40.3°. The conformation around the exocyclic C—C bond is ap (trans), with a torsion angle, γ, of −173.8 (3)°. The nucleoside forms a hydrogen‐bonded network, leading to a close‐packed multiple‐layer structure with a head‐to‐head arrangement of the bases. The nucleobase interplanar O=C—C⋯NH2 distance is 3.441 (1) Å.  相似文献   

15.
In the title compound, [Fe(C5H5)(C12H19NO)]I, the ferrocene moiety has an eclipsed conformation, with mean Fe—C bond lengths of 2.031 (4) and 2.020 (6) Å for the substituted and unsubstituted cyclo­penta­dienyl rings. The pyrrolidinium heterocycle adopts an envelope conformation and has its 1‐ and 2‐substituents in a relative trans disposition. Strong (+/−)‐charge‐assisted N—H·I and C—H·I hydrogen bonds are present. The crystal structure is also stabilized by weak C—H·O interactions.  相似文献   

16.
The title compound, [MnN(C28H22N2O2)], has a distorted square‐pyramidal coordination with an Mn[triple‐bond]N bond length of 1.516 (2) Å at the apical position. The five‐membered chelate ring adopts a gauche conformation with the two phenyl groups in equatorial orientations.  相似文献   

17.
The title compound, C11H12F2N4O3, exhibits an anti glycosylic bond conformation, with a torsion angle χ = −117.8 (2)°. The sugar pucker is N‐type (C4′‐exo, between 3T4 and E4, with P = 45.3° and τm = 41.3°). The conformation around the exocyclic C—C bond is −ap (trans), with a torsion angle γ = −177.46 (15)°. The nucleobases are stacked head‐to‐head. The crystal structure is characterized by a three‐dimensional hydrogen‐bond network involving N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.  相似文献   

18.
The synthesis of 8-azaguanine N9-, N8-, and N7-(2′-deoxyribonucleosides) 1–3 , related to 2′-deoxyguanosine ( 4 ), is described. Glycosylation of the anion of 5-amino-7-methoxy-3H-1,2,3-triazolo[4,5-d]pyrimidine ( 5 ) with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 6 ) afforded the regioisomeric glycosylation products 7a/7b, 8a/8b , and 9 (Scheme 1) which were detoluoylated to give 10a, 10b, 11a, 11b , and 12a . The anomeric configuration as well as the position of glycosylation were determined by combination of UV, 13C-NMR, and 1H-NMR NOE-difference spectroscopy. The 2-amino-8-aza-2′-deoxyadenosine ( 13 ), obtained from 7a , was deaminated by adenosine deaminase to yield 8-aza-2′-deoxyguanosine ( 1 ), whereas the N7- and N8-regioisomers were no substrates of the enzyme. The N-glycosylic bond of compound 1 (0.1 N HCl) is ca. 10 times more stable than that of 2′-deoxyguanosine ( 4 ).  相似文献   

19.
The title compound [systematic name: 1‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐4‐nitro‐1H‐pyrrolo[2,3‐b]pyridine], C12H13N3O5, forms an intramolecular hydrogen bond between the pyridine N atom as acceptor and the 5′‐hydroxy group of the sugar residue as donor. Consequently, the N‐glycosylic bond exhibits a syn conformation, with a χ torsion angle of 61.6 (2)°, and the pentofuranosyl residue adopts a C2′‐endo envelope conformation (2E, S‐type), with P = 162.1 (1)° and τm = 36.2 (1)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a torsion angle γ = 49.1 (2)°. The title nucleoside forms an ordered and stacked three‐dimensional network. The pyrrole ring of one layer faces the pyridine ring of an adjacent layer. Additionally, intermolecular O—H...O and C—H...O hydrogen bonds stabilize the crystal structure.  相似文献   

20.
The crystal structure of the title compound, C20H17NO4S, (I), was determined in order to compare the solution and solid‐state conformations. The mol­ecule was synthesized as a building block for incorporation into oligosaccharides comprised of conformationally restricted furan­ose residues. The furan­ose ring adopts an envelope conformation with the ring O atom displaced above the plane (an OE conformation). The pseudorotational phase angle (P) is 88.6° and the puckering amplitude (τm) is 31.5°. The C2—C1—S—C(Ph) torsion angle is ?163.2 (2)°, which places the aglycone in the exo‐anomeric effect preferred position. The C1—S—C14 bond angle is 99.02 (13)° and the plane of the cresyl moiety is oriented nearly parallel to the four in‐plane atoms of the furan­ose ring envelope. The orientation about the C4—C5 bond is gauchegauche [Bock & Duus (1994). J. Carbohydr. Chem. 13 , 513–543].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号