首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We have applied a nonequilibrium molecular dynamics heat flow algorithm to calculate the heat conductivity of a molecular model system, which forms uniaxial and biaxial nematic liquid crystals. The model system consists of a soft ellipsoid string-fluid where the ellipsoids interact according to a repulsive version of the Gay-Berne potential. On compression, this system forms discotic or calamitic uniaxial nematic phases depending on the dimensions of the molecules, and on further compression a biaxial nematic phase is formed. In the discotic nematic phase, the heat conductivity has two components, one parallel and one perpendicular to the director, where the last mentioned component is the largest one. This order of magnitudes is reversed in the calamitic nematic phase. In the biaxial nematic phase there are three components of the heat conductivity, one in the direction around which the long axes of the molecules are oriented, this is the largest component, another one in the direction around which the normals of the broadsides of the molecules are oriented, this is the smallest component, and one in the direction perpendicular to these two directions with a magnitude in between those of the first mentioned components. The relative magnitudes of the components of the heat conductivity span a fairly wide interval so it should be possible to use the model to parameterise experimental data.  相似文献   

2.
The orientational dynamics of thermotropic liquid crystals across the isotropic-nematic phase transition have traditionally been investigated at long times or low frequencies using frequency domain measurements. The situation has now changed significantly with the recent report of a series of interesting transient optical Kerr effect (OKE) experiments that probed orientational relaxation of a number of calamitic liquid crystals (which consist of rod-like molecules) directly in the time domain, over a wide time window ranging from subpicoseconds to tens of microseconds. The most intriguing revelation is that the decay of the OKE signal at short to intermediate times (from a few tens of picoseconds to several hundred nanoseconds) follows multiple temporal power laws. Another remarkable feature that has emerged from these OKE measurements is the similarity in the orientational relaxation behavior between the isotropic phase of calamitic liquid crystals near the isotropic-nematic transition and supercooled molecular liquids, notwithstanding their largely different macroscopic states. In this article, we present an overview of the understanding that has emerged from recent computational and theoretical studies of calamitic liquid crystals across the isotropic-nematic transition. Topics discussed include (a) single-particle as well as collective orientational dynamics at a short-to-intermediate time window, (b) heterogeneous dynamics in orientational degrees of freedom diagnosed by a non-Gaussian parameter, (c) fragility, and (d) temperature-dependent exploration of underlying energy landscapes as calamitic liquid crystals settle into increasingly ordered mesophases upon cooling from the high-temperature isotropic phase. A comparison of our results with those of supercooled molecular liquids reveals an array of analogous features in these two important classes of soft matter systems. We further find that the onset of growth of the orientational order in the parent nematic phase induces translational order, resulting in smectic-like layers in the potential energy minima of calamitic systems if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. We discuss implications of this startling observation. We also discuss recent results on the orientational dynamics of discotic liquid crystals that are found to be rather similar to those of calamitic liquid crystals.  相似文献   

3.
《Liquid crystals》2000,27(11):1431-1436
The present investigation concerns the analysis of the influence of short range orientational correlation on the thermodynamic properties of discotic-nematic liquid crystals. Two-site cluster approximation is applied to the orientational molecular coordinates to include the short range orientational correlation. The role of short range orientational order, dispersion interaction, molecular length-to-width ratio and pressure on the thermodynamic and orientational behaviour of discotic nematogens close to the discotic-nematic to isotropic transition are analysed. It is observed that the short range orientational order has a strong influence on the thermodynamic properties and that the transition properties of both the calamitic and discotic mesogens exhibit quite similar behaviour.  相似文献   

4.
The present investigation concerns the analysis of the influence of short range orientational correlation on the thermodynamic properties of discotic-nematic liquid crystals. Two-site cluster approximation is applied to the orientational molecular coordinates to include the short range orientational correlation. The role of short range orientational order, dispersion interaction, molecular length-to-width ratio and pressure on the thermodynamic and orientational behaviour of discotic nematogens close to the discotic-nematic to isotropic transition are analysed. It is observed that the short range orientational order has a strong influence on the thermodynamic properties and that the transition properties of both the calamitic and discotic mesogens exhibit quite similar behaviour.  相似文献   

5.
New discotic nematic liquid crystals have been prepared through intermolecular hydrogen bonding between the core of 1,3,5-trihydroxybenzene (phloroglucinol, PG) or 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) and the peripheral molecules of stilbazole derivatives. The various nematic phases formed by new hydrogen bonding building blocks were investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. The first discotic complexes of PG and trans-4-alkoxy-4′-stilbazoles exhibited nematic columnar (NC) and hexagonal columnar phases depending on the length of alkyl chains, which were considered as the basic discotic structure. Several structural variations on the building blocks were attempted to examine their effects on the liquid crystalline properties of discotic complexes. The nematic lateral phase (NL) with enhanced intercolumnar order was observed for the complexes of PG and trans-4-cyanoalkoxy-4′ stilbazoles due probably to the strong dipole interactions between cyano groups at the end of alkoxy chains. By introducing the nonlinear structure in three arms of supramolecular discotic mesogen, a discotic nematic phase (ND) was observed for the complex of THPB and trans-4-octyloxy-4 -stilbazole. The single hydrogen bonding between phenol and pyridine moieties in this study provides a simple and effective method for preparing the rarely found discotic nematic liquid crystals.  相似文献   

6.
A statistical mechanical theory is applied to study the equilibrium properties of discotic nematic liquid crystals. We report the calculation of thermodynamic properties for a model system composed of molecules interacting through angle-dependent pair potentials which can be broken up into rapidly varying short-ranged repulsions and weak long-range attractions. The repulsive interaction is represented by a repulsion between hard oblate ellipsoids of revolution and is a short-range, rapidly-varying, potential. The influence of attractive potentials, represented by dispersion and quadrupole interactions on a variety of thermodynamic properties is analysed. It is found that the thermodynamic properties for the discotic nematic-isotropic transition are highly sensitive to the form of effective one-body orientational perturbation potential. The discontinuity in the transition properties is more pronounced in the case of quadrupole interaction than for anisotropic dispersion interaction. A remarkable symmetry in the transition properties between prolate ellipsoids (ordinary nematic) and oblate ellipsoids (discotic nematic) is observed.  相似文献   

7.
8.
Two disc-shaped multialkynyl arene ethers (1 and 2) with unusual thermo-mesomorphic properties are presented. Conoscopic studies show that the nematic phases of these new low molecular weight liquid crystals are biaxial and that the sign of their biaxiality is negative. The diether 2 is the first discotic twin liquid crystal which exhibits a nematic phase.  相似文献   

9.
Sandeep Kumar 《Liquid crystals》2005,32(9):1089-1113
Discotic liquid crystals are unique nanostructures with remarkable electronic and optoelectronic properties. Triphenylene derivatives play a major role in the research on discotic liquid crystals. Following recent reviews of the chemistry of triphenylene-based monomeric liquid crystals, this article now reviews the chemistry and physical properties of triphenylene-based discotic dimeric, oligomeric and polymeric liquid crystals.  相似文献   

10.
We report alignment of anisotropic amphiphilic dye molecules within oblate and prolate anisotropic micelles and lamellae, the basic building blocks of surfactant-based lyotropic liquid crystals. Absorption and fluorescence transition dipole moments of these dye molecules orient either parallel or orthogonal to the liquid crystal director. This alignment enables three-dimensional visualization of director structures and defects in different lyotropic mesophases by means of fluorescence confocal polarizing microscopy and two-photon excitation fluorescence polarizing microscopy. The studied structures include nematic tactoids, Schlieren texture with disclinations in the calamitic nematic phase, oily streaks in the lamellar phase, developable domains in the columnar hexagonal phase, and various types of line defects in the discotic cholesteric phase. Orientational three-dimensional imaging of structures in the lyotropic cholesterics reveals large Burgers vector dislocations in cholesteric layering with singular disclinations in the dislocation cores that are not common for their thermotropic counterparts.  相似文献   

11.
Thermodynamic, structural and dynamical properties of a new type of discotic compounds, a hydrocarbon without any heteroatoms, displaying a nematic discotic phase have been investigated by means of X-ray diffraction, electro-optical relaxation, and calorimetric studies. Of particular interest are the strength of the first order nematic—isotropic phase transition and the nature of the orientational fluctuations in the isotropic phase. The short range positional order was found to be biaxial in both the isotropic and the nematic phase. The isotropic phase displays strong pretransitional effects originating from orientational fluctuations in the neighbourhood of the transition to the nematic phase. The character of these pretransitional effects differs from that found for calamitic systems in that the number of correlated molecules g2 is extremely large, of the order of 600 at the clearing temperature and the electro-optical relaxation time is very large, caused by the large value of g2.  相似文献   

12.
The phase diagram of the sodium dodecylsulphate/decanol/water system is studied by2H NMR spectroscopy in the range between the calamitic nematic (N+C) and discotic nematic (N-D) phases. In this narrow range a nematic biaxial phase (NBX) is observed. The phase transitions between the nematic phases are all of first order. The shape of the surfactant aggregates in the nematic phases varies with composition and temperature.  相似文献   

13.
《Liquid crystals》1997,23(1):93-111
This paper presents a non-linear numerical and bifurcation analysis of pattern formation phenomena in a discotic nematic liquid crystal confined to annular cylindrical cavities and subjected to extensional deformations. The results are of direct relevance to understanding the industrial melt spinning of mesophase carbon fibres, using discotic nematic liquid crystals precursor materials. Three types of orientation patterns are identified in this study: spatially constant (radial), monotonic (pinwheel), and oscillatory (zigzag). Numerical and closed form analytical results predicting continuous transformations between the radial, pinwheel, zigzag radial orientation modes are presented. The bifurcation analysis provides a direct characterization of the parametric dependence and the transitions between these three basic patterns, and provides a complete understanding of the multistability phenomena that is present in the oscillatory orientation patterns. In general it is found that small fibres of nearly elastically isotropic discotic nematic liquid crystals tend to adopt the classical ideal radial texture, while larger fibres with anisotropic elastic moduli tend to yield the zigzag texture. Fixed arbitrary surface orientation of intermediate size and anisotropy tend to adopt the pinwheel texture. The theoretical results are able to explain the main features and mechanisms that lead to the commonly observed cross-section textures of industrially spun mesophase carbon fibres.  相似文献   

14.
Self-organization of disc-like molecules: chemical aspects   总被引:2,自引:0,他引:2  
The hierarchical self-assembly of disc-shaped molecules leads to the formation of discotic liquid crystals. These materials are of fundamental importance not only as models for the study of energy and charge migration in self-organized systems but also as functional materials for device applications such as, one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors and gas sensors. The negative birefringence films formed by polymerized nematic discotic liquid crystals have been commercialized as compensation foils to enlarge the viewing angle of commonly used twisted nematic liquid crystal displays. To date the number of discotic liquid crystals derived from more than 50 different cores comes to about 3000. This critical review describes, after an in-depth introduction, recent advances in basic design principles and synthetic approaches towards the preparation of most frequently encountered discotic liquid crystals.  相似文献   

15.
Discotic liquid crystals: from tailor-made synthesis to plastic electronics   总被引:2,自引:0,他引:2  
Most associate liquid crystals with their everyday use in laptop computers, mobile phones, digital cameras, and other electronic devices. However, in contrast to their rodlike (calamitic) counterparts, first described in 1907 by Vorl?nder, disklike (discotic, columnar) liquid crystals, which were discovered in 1977 by Chandrasekhar et al., offer further applications as a result of their orientation in the columnar mesophase, making them ideal candidates for molecular wires in various optical and electronic devices such as photocopiers, laser printers, photovoltaic cells, light-emitting diodes, field-effect transistors, and holographic data storage. Beginning with an overview of the various mesophases and characterization methods, this Review will focus on the major classes of columnar mesogens rather than presenting a library of columnar liquid crystals. Emphasis will be given to efficient synthetic procedures, and relevant mesomorphic and physical properties. Finally, some applications and perspectives in materials science and molecular electronics will be discussed.  相似文献   

16.
Experimental results for the temperature dependence of density at normal pressure for two compositions of sodium lauryl sulphate/decanol/water solutions, exhibiting either a calamitic or a discotic lyotropic nematic phase at room temperature, are presented. Within the limits of experimental precision (±1 ×10-5 g cm-3), the systems show no jump in density at the nematic to isotropic phase transition. Over the studied temperature range, the mean thermal expansion coefficients were also evaluated.  相似文献   

17.
A number of new s-triazines (cyanurates and isocyanurates) with diaromatic mesogenic branches have been synthesized and their thermal properties investigated. No liquid crystal phases were found in the series of isocyanurates, while the cyanurates form enantiotropic calamitic mesophases (nematic and in one case smectic). No discotic mesophases could be detected. The mesogenic power of the cyclotrimers is reversed with respect to that of the monomers from which they can be obtained (cyanates and isocyanates). Molecular calculations reveal that the cyanurates can adopt an extended rod-like conformation due to the flexibility introduced by the oxygen bridge between the central ring and the mesogenic branches. The direction of the ester group in the phenyl benzoate mesogenic branches has a tremendous influence on the mesomorphic properties, with the result that mesophases could only be observed if the benzoic acid part was attached to the triazine ring.  相似文献   

18.
《Liquid crystals》1999,26(7):999-1005
We investigate the influence of dispersion interaction on a variety of thermodynamic properties of discotic nematic liquid crystals at the discotic nematic-isotropic transition. We report calculations for a hard oblate ellipsoidal system, superposed with an attractive interaction represented by dispersion interaction subjected to different external pressures ranging from 1 to 300 bar. We consider a model system (which simulates a discotic nematic liquid crystal) in which molecules are assumed to interact via a pair potential having both repulsive and attractive parts. The repulsion part is represented by a repulsion between hard oblate ellipsoids of revolution and is a short range, rapidly varying potential. The attractive potential, a function of centre of mass distance and relative orientation between two molecules, is represented by dispersion interaction. The properties of the reference system and first order perturbation term are evaluated using a decoupling approximation which decouples orientational from translational degrees of freedom. The inclusion of fourth and sixth rank orientational order parameters in the calculation slightly improves the result. The role of pressure on phase transition parameters has also been studied.  相似文献   

19.
We investigate the influence of dispersion interaction on a variety of thermodynamic properties of discotic nematic liquid crystals at the discotic nematic-isotropic transition. We report calculations for a hard oblate ellipsoidal system, superposed with an attractive interaction represented by dispersion interaction subjected to different external pressures ranging from 1 to 300 bar. We consider a model system (which simulates a discotic nematic liquid crystal) in which molecules are assumed to interact via a pair potential having both repulsive and attractive parts. The repulsion part is represented by a repulsion between hard oblate ellipsoids of revolution and is a short range, rapidly varying potential. The attractive potential, a function of centre of mass distance and relative orientation between two molecules, is represented by dispersion interaction. The properties of the reference system and first order perturbation term are evaluated using a decoupling approximation which decouples orientational from translational degrees of freedom. The inclusion of fourth and sixth rank orientational order parameters in the calculation slightly improves the result. The role of pressure on phase transition parameters has also been studied.  相似文献   

20.
A technique which combines image analysis and polarising optical microscope (POM) is a useful tool for the physical investigation of discotic liquid crystals, such as hexabutoxytriphenylene and hexahexyloxytriphenylene. This investigation includes the phase transitions, optical properties and order parameter as a function of temperature. Textures of discotic liquid crystals are captured as a function of temperature using POM. These microscopic textures are analysed using MATLAB software to compute statistical parameters, Legendre moments, optical parameters and order parameters of discotic liquid crystal samples. Compared with other techniques in the literature, the proposed methodology is a reliable and very simple technique for the physical investigation of liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号