首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration.  相似文献   

2.
We report on a computer simulation study of a Lennard-Jones liquid confined in a narrow slit pore with tunable attractive walls. In order to investigate how freezing in this system occurs, we perform an analysis using different order parameters. Although some of the parameters indicate that the system goes through a hexatic phase, other parameters do not. This shows that to be certain whether a system of a finite particle number has a hexatic phase, one needs to study not only a large system, but also several order parameters to check all necessary properties. We find that the Binder cumulant is the most reliable one to prove the existence of a hexatic phase. We observe an intermediate hexatic phase only in a monolayer of particles confined such that the fluctuations in the positions perpendicular to the walls are less than 0.15 particle diameters, i.e., if the system is practically perfectly 2D.  相似文献   

3.
A unique pH-dependent phase behavior from a copolymer micellar solution to a collapsed hydrogel with micelles ordered in a hexagonal phase was observed. Small-angle neutron scattering (SANS) was used to follow the pH-dependent structural evolution of micelles formed in a solution of a pentablock copolymer consisting of poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) (PDEAEM25-b-PEO100-b-PPO65-b-PEO100-b-PDEAEM25). Between pH 3.0 and pH 7.4, we observed the presence of charged spherical micelles. Increasing the pH of the micelle solution above pH 7.4 resulted in increasing the size of the micelles due to the increasing hydrophobicity of the PDEAEM blocks above their pKa of 7.6. The increase in size of the spherical micelles resulted in a transition to a cylindrical micelle morphology in the pH range 8.1-10.5, and at pH >11, the copolymer solution undergoes macroscopic phase separation. Indeed, the phase separated copolymer sediments and coalesces into a hydrogel structure that consists of 25-35 wt % water. Small-angle X-ray scattering (SAXS) clearly indicated that the hydrogel has a hexagonal ordered phase. Interestingly, the process is reversible, as lowering of the pH below 7.0 leads to rapid dissolution of the solid into homogeneous solution. We believe that the hexagonal structure in the hydrogel is a result of the organization of the cylindrical micelles due to the increased hydrophobic interactions between the micelles at 70 degrees C and pH 11. Thus we have developed a pH-/temperature-dependent, reversible hierarchically self-assembling block copolymer system with structures spanning nano- to microscale dimensions.  相似文献   

4.
Micellar solutions of hexadecyltrimethylammonium bromide (CTAB) in a protic ionic liquid, ethylammonium nitrate (EAN), are studied by shear rheology, polarizing optical microscopy (POM), conductivity measurements, and small angle neutron scattering (SANS). Three concentration regimes are examined: A dilute regime (with concentrations [CTAB] < 5 wt %) consisting of noninteracting spherical micelles, a semidilute regime (5 wt % ≤ [CTAB] ≤ 45 wt %) where micelles interact via electrostatic repulsions, and a concentrated regime (45 wt % < [CTAB] ≤ 62 wt %) where a reversible, temperature-dependent isotropic (L(1)) to hexatic (Hex) phase transition is observed. The L(1)-Hex transition, which has been predicted but not previously observed, is characterized by (1) a sharp increase in the shear viscosity, (2) the formation of focal conical birefringence textures (observed by POM), and (3) enhancement of the crystalline order, evidenced by the appearance of Bragg reflections in the SANS profiles. Ionic conductivity is not sensitive to the L(1)-Hex transition, which corroborates the absence of topological transitions.  相似文献   

5.
We present a simple method based on the dispersion of fluorescent quantum dots (QD) into a liquid crystal phase that provides either nanostructured material or isolated QD micelles depending on water concentration. The liquid-crystal phase was obtained by using a gallate amphiphile with a poly(ethylene glycol) chain as the polar headgroup, named I. The hydration of QD/I mixtures resulted in the formation of a composite hexagonal phase identified by small-angle X-ray scattering and by polarized light and fluorescence optical microscopy, showing a homogeneous distribution of fluorescence within hexagonal phase. This composite mesophase can be converted into isolated QD-I micelles by dilution in water. The fluorescent QD-I micelles, purified by size exclusion chromatography, are well monodisperse with a hydrodynamic diameter of 20-30 nm. Moreover, these QD do not show any nonspecific adsorption on lipid or cell membranes. By simply adjusting the water content, the PEG gallate amphiphile I provides a simple method to prepare a self-organized composite phase or pegylated water soluble QD micelles for biological applications.  相似文献   

6.
The initial stages of SBA-15 synthesis have been studied by using in situ time-resolved small-angle X-ray scattering with a synchrotron radiation source. The quantitative analysis of X-ray scattering and diffraction intensities allows the structures of intermediates to be identified at the different stages of SBA-15 synthesis. Following tetraethylorthosilicate (TEOS) addition, an intense small-angle scattering and an associated secondary maximum are observed, which are attributed to non-interacting surfactant template micelles encrusted with silicate species. After 25-30 min of the reaction, the broad scattering disappears and narrow Bragg diffraction peaks typical of hexagonally ordered structure are observed. The cylindrical micelles identified from X-ray scattering data appear to be the direct precursors of 2D hexagonal SBA-15 structure. Just after the formation of the SBA-15 hexagonal phase, the cylindrical micelles are only weakly linked in the hexagonal structure. As the synthesis proceeds, the solvent in the void volume between the cylindrical micelles is gradually replaced by more dense silicate species. The unit cell parameter of SBA-15 is progressively decreasing during the SBA-15 synthesis, which can be related to the condensation and densification of silicate fragments in the spaces between the cylinders. The volume fraction of the 2D hexagonally ordered phase is sharply growing during the first 2 h of the reaction. The inner core radius of SBA-15 material remains almost constant during the whole synthesis and is principally affected by the size of the poly(propylene oxide) inner core in the original cylindrical micelles.  相似文献   

7.
Enhanced digital video microscopy is applied to study the equilibrium structure of a two-dimensional charged sulfate-polystyrene particle (2 mum in diameter) monolayer at decane/water interfaces. When the surface density is decreased, a sequential phase transition, pure solid phase-->pure hexatic phase-->liquid-hexatic-coexisting phase-->pure liquid phase, is observed. In addition, the transition between liquid and hexatic phases is first order, while the solid-hexatic phase transition is second order. The temperature effect on this two-dimensional melting transition is discussed by performing the experiments at three different temperatures. The Voronoi [J. Reine Angew. Math. 134, 198 (1908)] construction is applied to analyze the defect structure in the two-dimensional particle monolayer. The pair interaction potential of the two-dimensional colloidal particles is found to be a very long range repulsion and to decay with distance to the power of -3.  相似文献   

8.
The knowledge of the exact shapes of micelles in various micellar phases found in both lyotropic and thermotropic liquid crystals is very important to our understanding of the underlying principles of molecular self-assembly. In the current paper we present a detailed structural study of the hexagonal close packed (hcp, space group P63/mmc) micellar phase, observed in the binary mixtures of nonionic surfactant C12EO8 and water. The reconstructed electron density map of the phase shows perfectly spherical micelles. A spherical core/shell model of micelles, which fits the observed X-ray diffraction pattern satisfactorily, is subsequently constructed. The results confirm the previous assumption that the hcp phase consists of spherical close contacting micelles, each of which contains a low-density core of aliphatic parts and a high-density shell of hydrated ethylene oxide segments, with the gaps between the micelles filled by pure water.  相似文献   

9.
Oriented mesostructured surfactant-silica nanocomposite thin films with a 2D hexagonal mesostructure of cylindrical micelles were prepared by evaporation-induced self-assembly using two different nonionic Brij surfactants and studied by small-angle X-ray scattering in symmetric reflection (SRSAXS) and grazing incidence (GISAXS) geometries. A novel SRSAXS evaluation approach was applied that allowed a good fitting of the SRSAXS data over almost the whole range of scattering vectors. Aside from the cylinder radius and the lattice parameter, the approach provided accurate values for the polydispersity of the micelles, lattice distortions, and preferred orientation. These analyses revealed a significant rise of the micelle radius and accordingly the lattice parameter upon an increase in the ratio surfactant/SiO(2), attributable to a decrease in the solubilization of the poly(ethylene oxide) (PEO) chains by water, in agreement with Monte Carlo simulations. Furthermore, the SRSAXS analysis was successfully applied to the corresponding mesoporous films for the determination of pore sizes.  相似文献   

10.
We studied the melting behavior of two-dimensional colloidal crystals with a Yukawa pair potential by Brownian dynamics simulations. The melting follows the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario with two continuous phase transitions and a middle hexatic phase. The two phase-transition points were accurately identified from the divergence of the translational and orientational susceptibilities. Configurational temperatures were employed to monitor the equilibrium of the overdamped system and the strongest temperature fluctuation was observed in the hexatic phase. The inherent structure obtained by rapid quenching exhibits three different behaviors in the solid, hexatic, and liquid phases. The measured core energy of the free dislocations, E(c) = 7.81 ± 0.91 k(B)T, is larger than the critical value of 2.84 k(B)T, which consistently supports the KTHNY melting scenario.  相似文献   

11.
《Liquid crystals》2000,27(5):643-648
The influence of geometric confinement on the state of order and on the glass relaxation process was investigated for a triphenylene derivative able to display a highly ordered plastic columnar phase in the bulk. The compound was incorporated into porous glasses - characterized by a narrow size distribution - with average pore diameters of 20, 7.5, 5 and 2.5 nm. The X-ray diagrams revealed the presence of a hexagonal order, yet the lattice spacing is significantly reduced with decreasing pore size and the reflections become broad. The X-ray doublet reflection, superimposed on the halo which is characteristic for the bulk plastic columnar phase, is absent in all cases. It is replaced by a single broad intracolumnar reflection which indicates that the confinement destabilizes the plastic phase in favour of the hexagonal ordered phase. A further observation is that the intracolumnar correlation length is reduced with decreasing pore size. The confinement was furthermore found to cause a transition from a strong glass (bulk material) to a fragile glass former, obviously induced by the structural modification.  相似文献   

12.
The influence of geometric confinement on the state of order and on the glass relaxation process was investigated for a triphenylene derivative able to display a highly ordered plastic columnar phase in the bulk. The compound was incorporated into porous glasses - characterized by a narrow size distribution - with average pore diameters of 20, 7.5, 5 and 2.5 nm. The X-ray diagrams revealed the presence of a hexagonal order, yet the lattice spacing is significantly reduced with decreasing pore size and the reflections become broad. The X-ray doublet reflection, superimposed on the halo which is characteristic for the bulk plastic columnar phase, is absent in all cases. It is replaced by a single broad intracolumnar reflection which indicates that the confinement destabilizes the plastic phase in favour of the hexagonal ordered phase. A further observation is that the intracolumnar correlation length is reduced with decreasing pore size. The confinement was furthermore found to cause a transition from a strong glass (bulk material) to a fragile glass former, obviously induced by the structural modification.  相似文献   

13.
The structure of a three-dimensional mesophase has been studied by the methods of small-angle X-ray diffraction and reconstruction of electron-density maps of the cubic lattice. In the oriented samples based on monodendrons with partially fluorinated alkyl tails, this mesophase has been shown to coexist with a two-dimensional columnar phase through a wide temperature interval. Epitaxial relationships between (10) planes of the hexagonal lattice and (211) planes of the cubic lattices lead to the ten-point pattern of azimuthal intensity distribution for the first X-ray 211 reflection and to the six-point intensity distribution for the second 220 reflection. The observed 12-point pattern of the 220 reflection is due to the presence of twin “crystallites” of the three-dimensional phase, and their [110] axis is parallel to the axis of cylinders in the columnar phase. The reconstructed electron-density maps show that the regions with increased electron density, which are composed of fluorinated aliphatic tails, form a bicontinuous gyroid structure.  相似文献   

14.
The mechanism of formation of two different cubic mesoporous silica materials formed with Pluronic triblock copolymers is investigated with in situ time-resolved small-angle synchrotron X-ray scattering, in situ time-resolved 1H nuclear magnetic resonance, and time-resolved transmission electron microscopy. The materials studied are the micellar cubic (Imm) SBA-16 formed with Pluronic F108 and the bicontinuous cubic (Iad) silica material formed with Pluronic P103 and NaI. The formation mechanisms of the two cubic structures are shown to be dissimilar. For the Imm material, in the early stages of the synthesis, flocs of unordered micelles are observed, but areas where the micelles have started to order are also present. With time, there is an increase in order; however, there is a coexistence of unordered micelles and ordered material all through this study. The bicontinuous cubic silica is formed via a different path. The system is phase-separated already before the addition of the silica source, which implies that a concentrated phase is present, acting as the structure director of the Iad structure. The results are compared with earlier reports on the formation of the hexagonal SBA-15 material.  相似文献   

15.
The electro-optic and complex dielectric behaviour of an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4'-(n-butanoyloxyprop-1-oxy)biphenyl-4-carboxylate, having chiral SmCA* and hexatic smectic phases, have been investigated. Complex dielectric permittivities were measured as a function of frequency, d.c. bias field and temperature. Spontaneous polarization was measured by the current reversal technique; tilt angle was measured under a polarizing microscope using a low frequency electric field. The electro-optic properties and dielectric behaviour of the material are compared with results obtained by DSC and polarizing optical microscopy. Dielectric relaxation processes in SmCA* and hexatic smectic phases were determined. The dielectric strength at the SmCA* to hexatic smectic phase transition is discussed in terms of coupling between the long range bond orientational order and smectic C director. It seems from the results of spontaneous polarization and dielectric relaxation spectroscopy that the material might possess an additional phase between the SmCA* and hexatic smectic I* phases.  相似文献   

16.
We have studied the effect of shape of an amphiphilic molecule on micellization properties by carrying out stochastic molecular dynamics simulation on a bead-spring model of amphiphiles for several sizes of hydrophilic head group with a fixed hydrophobic tail length. Our studies show that the effect of geometry of an amphiphile on shape and cluster distribution of micelles is significant. We find the critical micelle concentration increases with the increasing size of the hydrophilic head. We demonstrate that the onset of micellization is accompanied by (i) a peak in the specific heat as found earlier in the simulation studies of lattice models, and (ii) a peak in the characteristic relaxation time of the cluster autocorrelation function. Amphiphiles with larger hydrophilic head form smaller micelles with sharper cluster distribution. Our studies are relevant to the controlled synthesis of nanostructures of desired shapes and sizes using self-assembling properties of amphiphiles.  相似文献   

17.
A model of subphtalocyanine molecules ordering on Ag(111) is proposed. We have demonstrated that the driving force of the ordering into honeycomb and hexagonal close packed patterns is a balance of intermolecular and subphtalocyanine-Ag interactions which can be generally expressed by a potential with infinite exclusion in a sufficiently large number of nearest coordination spheres of Ag(111) lattice and oscillatingly decaying behavior outside the sphere of exclusion. To cope with computational problems due to large size of the molecules compared to the substrate lattice period, we introduce the rescaling of Ag(111) lattice, and took into account an infinite exclusion of first, second, and third neighbors, attraction-of fourth and fifth, and repulsion-of sixth and seventh. The phase diagram is obtained by the lattice gas model using Monte Carlo simulations. Very strong first order phase transitions, causing the two-phase coexistence, were found between disordered and honeycomb as well as between disordered and hexagonal closed packed phases.  相似文献   

18.
The recent discovery of a distorted hexagonal phase in 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine/1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPE/DOPC) mixtures raised the intriguing question as to whether lipid mixtures demix in a bent monolayer. We performed neutron diffraction on a mixture of headgroup deuterated DOPC-d(13) and nondeuterated DOPE to study the lipid distribution in the distorted hexagonal phase. The 1:1 lipid mixture in full hydration and 25 degrees C was in a homogeneous lamellar phase. Upon dehydration the mixture transformed to a rhombohedral phase, then to a distorted inverted hexagonal phase, and finally to a regular inverted hexagonal phase. In the distorted hexagonal phase, the diffraction pattern showed a two-dimensional monoclinic lattice with two reciprocal vectors of equal length (1.5 nm(-)(1)) forming an angle 53 degrees between them. Diffraction intensities measured while varying the D(2)O/H(2)O ratio in the humidity was used to solve the phase problem. The neutron scattering length density distribution of the distorted hexagonal phase was constructed. The constant density contours are approximately elliptical. The difference in the eccentricities of the contours between the water and lipid distributions indicates that the DOPE/DOPC ratio is not uniform around the elliptical lipid tube in the unit cell. DOPE is preferentially distributed at the vertex regions where the curvature is the highest. Thus for the first time it is shown that when a monolayer of a homogeneous lipid mixture is bent, the lipid components are partially demixed in reaching the free energy minimum.  相似文献   

19.
三斜相SmBO3经过1200℃的高温煅烧会出现晶型转变现象,由三斜相全部转变为六方相。采用TEM表征了SmBO3粉体的晶型转变。SmBO3的晶型转变对激光反射率造成一定的影响,主要表现为:三斜相SmBO3对1.06μm激光的反射率较六方相SmBO3稍低,这是由于晶体结构的不同,晶胞常数发生变化,使得六方相SmBO3的吸收峰位置向长波方向红移了12 nm,吸收峰最低点的位置更偏离1.06μm;激光测试结果表明六方相SmBO3粉体对10.6μm激光的反射率要低于三斜相SmBO3粉体。  相似文献   

20.
Self-organizable dendronized helical polymers provide a suitable architecture for constructing molecular nanomachines capable of expressing their motions at macroscopic length scales. Nanomechanical function is demonstrated by a library of self-organized helical dendronized cis-transoidal polyphenylacetylenes ( cis-PPAs) that possess a first-order phase transition from a hexagonal columnar lattice with internal order (varphi h (io)) to a hexagonal columnar liquid crystal phase (varphi h). These polymers can function as nanomechanical actuators. When extruded as fibers, the self-organizable dendronized helical cis-PPAs form oriented bundles. Such fibers have been shown capable of work by displacing objects up to 250-times their mass. The helical cis-PPA backbone undergoes reversible extension and contraction on a single molecule length scale resulting from cisoid-to-transoid conformational isomerization of the cis-PPA. Furthermore, we clarify supramolecular structural properties necessary for the observed nanomechanical function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号