首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

2.
Atomic spectroscopy is the most popular approach to determine the presence of heavy metals in the environment. Heavy metals are potentially toxic and have various negative effects on many living organisms, including humans. With the rapid increase in the variety of industries and human activities, large amounts of heavy metals are released into the atmosphere, water, and soil. Heavy metal analysis of environmental samples is very important for determining the exposure limits. Environmental samples are highly complex matrices, and various sample preparation techniques have been developed for the extraction of heavy metals from them, including magnetic solid-phase extraction (MSPE). The use of MSPE in heavy metal analysis has recently gained significant attention owing to a number of advantages. MSPE technique overcomes main issues such as phase separation, handling, and column packing. The use of magnetic adsorbents in sample preparation has grown over the past few years, making MSPE a promising technique for sample preparation. The objective of this review article is to provide the latest applications of MSPE coupled with atomic spectroscopy for heavy metal determination in environmental samples. In addition, new magnetic adsorbents and their analytical merits are emphasized.  相似文献   

3.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

4.
张贵江  臧晓欢  周欣  王璐  王春  王志 《色谱》2013,31(11):1071-1075
将磁性石墨烯作为磁性固相萃取的吸附剂与气相色谱-质谱(GC-MS)相结合建立了环境水样中7种三嗪类除草剂残留的测定新方法。对影响萃取效率的一些因素如吸附剂用量、萃取时间、样品溶液的pH值、离子强度和解吸条件等进行了优化。在优化的实验条件下,7种三嗪类除草剂的富集倍数在574~968之间。测定西玛津、扑灭津、嗪草酮、西草净、氰草津的线性范围为0.01~10.0 μg/L,莠去津的线性范围为0.05~10.0 μg/L,扑灭净的线性范围为0.01~8.0 μg/L。线性相关系数为0.9968~0.9998,检出限(S/N=3)为1.0~5.0 ng/L。将本方法应用于井水、自来水和湖水等实际水样的分析,在0.5 μg/L和2.0 μg/L下的加标回收率为79.8%~118.3%,相对标准偏差为3.6%~10.5%。该法操作简单、富集倍数高,可满足水样中三嗪类除草剂残留的检测要求。  相似文献   

5.
A new type of adsorbent composed of magnetic three‐dimensional graphene coated with silver nanoparticles was synthesized by an electroless technique and used in the magnetic solid‐phase extraction of selected pesticides (fenitrothion, chlorpyrifos, and hexaconazole) before gas chromatography with a micro‐electron capture detector. The adsorbent was characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and field‐emission scanning electron microscopy. The important extraction parameters such as pH, adsorbent dose, extraction time, and desorption conditions were investigated. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–5 ng/g with determination coefficients of 0.991–0.996; limit of detection of 0.07–0.13 ng/g; limit of quantification of 0.242–0.448 ng/g; and the intraday and interday relative standard deviations (= 5 ng/g, = 3) were 3.8–8.7 and 6.6–8.9%, respectively. The developed method was successfully applied for analysis of the selected pesticides in tomato and grape with extraction recoveries in the range of 72.8–109.6%.  相似文献   

6.
H. Parham  N. Rahbar 《Talanta》2009,80(2):664-7942
A new, sensitive, fast and simple method using magnetic iron oxide nanoparticles (MIONs), as an adsorbent has been developed for extraction, preconcentration and determination of traces of fluoride ions. The determination method is based on the discoloration of Fe(III)-SCN complex with extracted fluoride ions which was subsequently monitored spectrophotometrically at λmax = 458 nm. Various parameters affecting the adsorption of fluoride by the MIONs have been investigated, such as pH of the solution, type, volume and concentration of desorbing reagent, amount of adsorbent and interference effects. A linear response for the determination of fluoride was achieved in the concentration range of 0.040-1.250 μg mL−1. The limit of detection (LOD) and limit of quantification (LOQ) for fluoride based on 3 times and 10 times the standard deviation of the blank (3Sb, 10Sb) were 0.015 and 0.042 μg mL−1 (n = 20) for fluoride ion, respectively. A preconcentration factor of 50 was achieved in this method. The proposed procedure has been applied for determination of fluoride concentration in various water samples. The results obtained from this method were successfully compared with those provided by standard SPADNS method.  相似文献   

7.
In this research a new physically functionalized nanoporous silica (SBA-15) using N′-[(2-hydroxy phenyl) methylene] benzohydrazide (BBH) was utilized as a selective sorbent for the separation, preconcentration and determination of dysprosium (Dy) in natural water by inductively coupled plasma optical emission spectrometry (ICP-OES). The selectivity of BBH to Dy (III) ion was previously tested by conductometric and spectroscopic methods. Conditions for effective adsorption of Dy were optimized with respect to experimental parameters in batch process. The extraction recovery was 96.5, analytical curve was linear in the range 0.2–1000?µgL?1, and the detection limit was 0.05?ng?mL?1. The relative standard deviation (RSD) under optimal conditions was 3.2% (n?=?10). The sorbent exhibited high adsorption capacity and fast rate of equilibrium for sorption of Dy ions. The method was applied for recovery and determination of dysprosium in different environmental water samples.  相似文献   

8.
ABSTRACT

In this work, the magnetic sorbent was developed by covalent binding of a Schiff base ligand, N,N’-bis(3-salicyliden aminopropyl)amine (salpr), on the surface of silica coated magnetic nanoparticles (Salpr@SCMNPs). The core-shell nanoparticle was applied for the magnetic solid-phase extraction (MSPE) combined with dispersive liquid-liquid microextraction (DLLME) of phenolic compounds from water samples prior to gas chromatography-flame ionisation detector (GC?FID). Characterisation of the Salpr@SCMNPs was performed with different physicochemical methods such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Variables affecting the performance of both extraction steps such as pH of the water sample, the sorbent amount, the desorption conditions, the extraction time; and extraction solvent were studied. Under the optimised conditions, the analytical performances were determined with a linear range of 0.01–100 ng mL?1 and a limit of detection at 0.003–0.02 ng mL?1 for all of the analytes studied. The intra-day (n = 5) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 6.9–8.9% and 7.3–10.1%, respectively. The proposed method was executed for the analysis of real water samples, whereby recoveries in the range of 92.9–99.0% and RSD% lower than 6.1% were attained.  相似文献   

9.
A magnetic solid-phase extraction (MSPE) method coupled to high performance liquid chromatography with UV (HPLC-UV) was proposed for the determination of organophosphorus pesticides (OPPs) at trace levels in environmental water samples. The ternary nanocomposite of graphene-carbon nanotube-Fe3O4 (G-CNT-Fe3O4) has been synthesised via a simple solvothermal process and the resultant material was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Significant factors that affect the extraction efficiency, such as amount of magnetic nanocomposite, extraction time, ionic strength, solution pH and desorption conditions were carefully investigated. The results demonstrated that the proposed method had a wide dynamic linear range (0.005–200 ng mL?1), good linearity (R2 = 0.9955–0.9996) and low detection limits (1.4–11 pg mL?1). High enrichment factors were achieved ranging from 930 to 1510. The results show that the developed method is suitable for trace level monitoring of OPPs in environmental water samples.  相似文献   

10.
In this research study, an efficient solid‐phase extraction procedure based on a new organometallic, effective, eco‐friendly and bio‐degradable nanoadsorbent was firstly introduced for influential pre‐concentration of Cu(II), Zn(II), Pb(II), Cd(II) and Mn(II) ions from food and water samples followed by flame atomic absorption spectrophotometric determination. This safe adsorbent consisted of silica nanoparticles chemically functionalized with di‐ethylen tri‐amine (SiO2@NH2NPs); easily prepared via an effective and simple approach. Characterization of SiO2@NH2NPs was subsequently implemented via SEM, FT‐IR and XRD; certifying high quality of the modified nanoadsorbent in terms of size, shape and surface functional groups. The effects of the main factors on the extraction efficiency were then optimized. Efficient extraction of the analytes of interest at neutral media accompanied with the aid of a bio‐compatible organometallic nanoadsorbent can be considered as valuable advantages of the proposed approach. In the optimum conditions, calibration graphs were linear in the range of 4–700 μg l?1, with higher correlation coefficients than 0.997 and limits of detection of 1.45–4.10 ng ml?1. The enrichment factor values were found to be in the span of 120–400. The resultant extraction recovery values were satisfactory; possessing the proper relative standard deviation (%, n  =  5) values of 2.05–4.28%.  相似文献   

11.
Magnetic polyimide poly(4,4′‐oxydiphenylene‐pyromellitimide) nanoparticles were successfully synthesized and developed for the solid‐phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3–42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π–π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41–63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6–94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1–100 μg/L (r > 0.9991) with limit of detection in the range of 0.15–0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5–99.5%) were obtained at different spiked values.  相似文献   

12.
A sensitive and selective solid-phase spectrophotometric method for the determination of trace amounts of Hg(II) cation in water is described. A complex was created with Hg(II) using 2,6-dimethyl-morpholine dithiocarbamate (DMMDTC) to form Hg(II)–(DMMDTC) and this complex was adsorbed onto microcrystalline naphthalene (MN) and then eluted with 5% acetic acid (in ethanol) solution. A preconcentration factor of 187 and a recovery of 95% were observed at pH of 5.0 and for 10 min. of extraction. The separated Hg(II) ions were quantified by using ultraviolet-visible spectrophotometer at 490.0 nm by creating a colored complex with dithizone in Triton X-100 surfactant media. Molar absorptivity and sandell’s sensitivity for the Hg(II)-dithizone were determined as 4.96 × 105 Lmol?1cm?1 and 0.4032 µg cm?2, respectively. The detection limit (LOD) was 1.7 μg L?1 under the optimized conditions of the analytical method.  相似文献   

13.
A novel magnetic core–shell material polyaniline@SiO2@Fe (PANI@SiO2@Fe) has been successfully synthesized and investigated as an effective adsorbent for the magnetic solid‐phase extraction of typical endocrine disrupting compounds such as bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol from water samples. The morphology of the as‐prepared PANI@SiO2@Fe was characterized by transmission electron microscopy and X‐ray diffraction. The main parameters that influenced the enrichment performance such as the kind of eluent, amount of adsorbent, volume of eluent, adsorption time, elution time, ionic strength, pH, concentration of humic acid, and sample volume were investigated. Under the optimal conditions, a good linear relationship was found in the range of 0.05–100 μg/L for bisphenol A, 0.05–300 μg/L for tetrabromobisphenol A, and 0.05–250 μg/L for 4‐nonylphenol, respectively. The correlation coefficients are all above 0.995. The limits of detection were in the range of 0.009–0.04 μg/L, and precisions were under 3.73% (n  = 6). The real water analysis indicated that the spiked recoveries were in the range of 92.9–98.9% (n  = 3). All these results indicated that the developed method was an efficient tool for the analysis of bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol.  相似文献   

14.
刘洪媛  金静  郭崔崔  陈吉平  胡春 《色谱》2021,39(8):835-844
双酚类化合物作为一类内分泌干扰物广泛存在于环境介质中,经过多种途径迁移至人体后,可对人体产生内分泌毒性、细胞毒性、基因毒性、生殖毒性、二噁英毒性和神经毒性,已被加拿大政府风险评估识别为进一步优先控制名录。随着环境领域对双酚类化合物的广泛关注,相关研究工作逐渐向水、沉积物、灰尘和生物样品等多介质开拓。但是,由于不同环境样品在基质复杂性和污染物浓度水平等方面存在显著差异,开发提取效率高、净化选择性好、普适性强、操作简单、高通量的提取和净化方法,有助于实现环境介质中双酚类化合物的高灵敏、批量检测。近年来,新型前处理技术发展迅速,尤其是固相萃取技术,在双酚类化合物提取与净化方面取得了长足的发展,不仅在一定程度上克服了传统提取净化方法存在的耗时、耗力和耗溶剂等不足,而且为新型污染物分析提供了更多的技术支持。该文简述了典型双酚类化合物的理化性质、用途用量和环境危害,重点围绕新型固相萃取吸附剂开发和固相萃取模式转变两个方面,总结了固相萃取在双酚类化合物提取净化方法方面取得的进展。商品化固相萃取产品普适性强,在环境监测领域应用范围较广,适用于双酚类化合物的产品种类有限;新型吸附剂研发聚焦吸附容量(如介孔硅材料、碳纳米材料、金属-有机框架材料、环糊精)和选择性(如分子印迹聚合物和混合模式离子交换聚合物)两个方面,种类多样化可满足不同检测需求;越来越多的高灵敏分析仪器不断推向市场,为适应新的发展形势,固相萃取模式正逐渐向微型化、自动化、简易化等方向发展,如QuEChERS、固相微萃取、磁固相萃取等。  相似文献   

15.
Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted‐based dispersive solid‐phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the studied triazines were within the range of 75.2–94.1%, with relative standard deviations lower than 11.3% (= 3). The limits of detection were within 0.16–0.51 µg/L, depending upon the triazine and the type of sample analyzed.  相似文献   

16.
A flow injection system was developed for on-line sorbent extraction preconcentration and flame atomic absorption spectrometric determination of cadmium in natural water samples. The non-charged cadmium complex with diethyl-dithiophosphate (DDPA) was formed on-line in 0.1 mol L−1 HNO3 and retained on the hydrophobic poly-chlorotrifluoroethylene (PCTFE) sorbent material. The adsorbed complex was eluted with isobutyl methylketone (IBMK) and injected directly into the nebulizer via a flow compensation unit. All major chemical and flow parameters affecting the complex formation adsorption and elution as well as interference were studied and optimized. By processing 2.4 mL of sample, the enhancement factor was 39 and the sampling frequency was 50 h−1. For 30 s preconcentration time the detection limit was 0.3 μg L−1 and the relative standard deviation at 5.0 μg L−1 Cd concentration level was 2.9%. The calibration curve was linear in the range 0.8–40.0 μg L−1. The accuracy of the method was estimated by analyzing a certified reference material NIST-CRM 1643d (Trace elements in water). Good recoveries were obtained for spiked natural-water and waste-water samples. Correspondence: Aristidis N. Anthemidis, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, GR-Thessaloniki 54124, Greece  相似文献   

17.
In this work, a novel extraction and enrichment technique based on hexadecyldimethyl amine functionalized magnetic nanoparticles has been successfully developed for the preconcentration and ultrasensitive detection of perfluorinated compounds in environmental water samples with high‐performance liquid chromatography coupled with tandem triple quadrupole mass spectrometry. As a novel surfactant, hexadecyldimethyl amine functionalized on magnetic nanoparticles was realized through one‐step facile and robust quaterization reaction, greatly superior to previous multiple‐step and unstable modification. The functional nanoparticles of homogeneous nanospheres and excellent magnetic properties were characterized with scanning electron microscopy, X‐ray diffraction patterns, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. Dual mechanisms of both hydrophobic and electrostatic interactions were simultaneously introduced for anionic perfluorinated compounds effective enrichment. Under optimized extraction conditions, satisfactory precision and accuracy for anionic perfluorinated compounds analysis were achieved with good linear ranging from 0.5 to 20 ng/L, as well as fascinating sensitivity with low limits of detection up to 3.0 × 10?2–5.0 × 10?2 ng/L. High preconcentration efficiency and extraction recoveries ranged from 81.04–103.2% with relative standard deviations (n = 5) less than 10% have also been realized. Thereby, our proposed method is convenient and efficient for enrichment, exhibiting good application prospect in future environmental perfluorinated compounds analysis.  相似文献   

18.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

19.
Graphene‐Fe3O4 nanoparticles were prepared using one‐step solvothermal method and characterized by X‐ray diffraction, FTIR spectroscopy, scanning electron microscopy, and vibrating sample magnetometry. The results demonstrated that Fe3O4 nanoparticles were homogeneously anchored on graphene nanosheets. The as‐synthesized graphene‐Fe3O4 nanoparticles were employed as sorbent for magnetic solid‐phase extraction of sulfonamides in milk prior to capillary electrophoresis analysis. The optimal capillary electrophoresis conditions were as follows: 60 mmol/L Na2HPO4 containing 2 mmol/L ethylenediaminetetraacetic acid disodium salt and 24% v/v methanol as running buffer, separation voltage of 14 kV, and detection wavelength of 270 nm. The parameters affecting extraction efficiency including desorption solution, the amount of graphene‐Fe3O4 nanoparticles, extraction time, and sample pH were investigated in detail. Under the optimal conditions, good linearity (5–200 μg/L) with correlation coefficients ≥0.9910 was obtained. The limits of detection were 0.89–2.31 μg/L. The relative standard deviations for intraday and interday analyses were 4.9–8.5 and 4.0–9.0%, respectively. The proposed method was successfully applied to the analysis of sulfonamides in milk samples with recoveries ranging from 62.7 to 104.8% and relative standard deviations less than 10.2%.  相似文献   

20.
Aminosilanized magnetic carbon microspheres as a novel adsorbent were designed and fabricated. The adsorbent was used for the magnetic solid‐phase extraction of bisphenols at trace levels from environmental water samples before liquid chromatography with tandem mass spectrometry analysis. The structure, surface, and magnetic behavior of the as‐prepared aminosilanized magnetic carbon microspheres were characterized by elemental analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, powder X‐ray diffraction, and vibrating sample magnetometry. The effects of the experimental parameters were investigated by the Plackett–Burman design, and then the parameters that were significant to the extraction efficiencies were optimized through a response surface methodology. The aminosilanized magnetic carbon microspheres exhibited high adsorption efficiency and selectivity for bisphenols. Under optimal conditions, low limits of detection (0.011–2.22 ng/L), and a wide linear range (2–3 orders of magnitude), good repeatability (4.7–7.8%, n = 5), and reproducibility (6.0–8.3%, n = 3) were achieved. The results demonstrate that the novel adsorbent possesses great potentials in the determination of trace levels of bisphenols in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号