首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

2.
Droplet formation in a wide-type microfluidic T-junction was studied using the computational fluid dynamics (CFD) method. Two distinct regimes of droplet formation were confirmed: dripping and jetting; and, at both regimes, droplet size decreases with an increase in capillary number. CFD simulation demonstrated that droplet formation in the T-junction can be divided into three steps: droplet emergence and growing up; separation with the disperse phase; and detachment from the channel wall. The wettability of the channel wall significantly affects the process of droplet detachment from the channel wall; also, the simulation clearly showed that droplets can be formed only when the continuous phase fluid preferentially wets the channel wall, that is, its contact angle on the wall is smaller than 90°. Finally, the CFD study verified that the disperse phase flow rate can significantly affect the droplet size as well as the mechanism of droplet formation.  相似文献   

3.
The coalescence behavior of droplets in an electric field belongs to the important research contents of electrohydrodynamics. Based on the phase field method of the Cahn–Hilliard equation, the electric field and the flow field are coupled to establish the numerical model of twin droplet coalescence in a coupled field. The effects of flow rate, electric field strength, droplet diameter, and interfacial tension on the coalescence behavior of droplets during the coalescence process were investigated. The results show that the dynamic behavior of the droplets is divided into coalescence, after coalescence rupture, and no coalescence under the coupling of electric field and flow field. The proper increase of the electric field strength will accelerate the coalescence of the droplets, and the high electric field strength causes the droplets to burst after coalescence. Excessive flow rates make droplets less prone to coalescence. Under the coupling field, the larger the droplet interface tension, the smaller the droplet diameter, the smaller the flow rate, and the shorter the droplet coalescence time. The results provide a theoretical basis for the application of electrostatic coalescence in gas–liquid separation technology.  相似文献   

4.
The total desolvation rate of sample droplets in an argon inductively coupled plasma (Ar ICP) is investigated through the development of a two-phase continuum flow computer model. The desolvation model is supplemented by equations used to determine the trajectories of particles through the plasma. The model is used to calculate the behavior of aerosol droplets from a direct injection high efficiency nebulizer (DIHEN), a micronebulizer used to inject microliter quantities of samples that are toxic, expensive, or of limited volume. We use the combination of desolvation and transport models to present the first predicted spatial distribution of droplet concentrations and evaporation rates in an ICP flow. These data are compared with the behavior of a DIHEN spray in an environment with no net argon gas flow to determine the importance of gas flow rates to overall droplet concentration profiles in the ICP. In addition, two separate techniques (Stokes’ equation and the direct simulation Monte Carlo treatment) for determining droplet trajectories are contrasted.  相似文献   

5.
A mechanical separation process in a de-oiling hydrocyclone is described in which disperse oil droplets are separated from a continuous water phase. This separation process is influenced by droplet breakage and coalescence. Based on experimental data and simulation results in a stirred tank, a modified breakage model, which can be applied to droplet breakage in the de-oiling hydrocyclone, is developed. Then, a simulation model is developed coupling the numerical solution of the flow field in the hydrocyclone based on computational fluid dynamics (CFD) with population balances. The homogenous discrete method and the inhomogeneous discrete method are applied for solving the population balance model (PBM). The investigations show that the numerical results obtained by the simulation model coupled with the modified PBM using the inhomogeneous discrete method are in good accordance with experimental data under a high flow rate. According to this simulation model, the effect of three different inlet designs on the separation efficiency of the de-oiling hydrocyclone has been discussed. The results indicate that the separation efficiency of the de-oiling hydrocyclone can be improved with an appropriate inlet design.  相似文献   

6.
Water-in-oil emulsion destabilization and separation in a batch gravity separator was investigated experimentally and by numerical modeling. A multiphase computational fluid dynamics (CFD) was used with a population balance model (PBM) to model separation behavior of crude oil emulsions. The inhomogeneous discrete method is used to solve the population balance equations. Closure kernels are applied to model droplet–droplet coalescence. To describe the increase in emulsion viscosity with water concentration, an emulsion viscosity model was selected that predicted emulsion stability and the denser emulsion layer forming above the coalescing interface, otherwise known as the dense packed zone or layer (DPZ). The results from a commercial CFD code are compared to experimental data of the water fraction vertical distribution measured by low-power ultrasound in the batch separator. The predicted time-dependent profiles of water fraction in the separator were found to be in good agreement with the experimental measurements for the range of water content from 6 to 50%. The model predicts the effect of water fraction on the separation kinetics and the evolution of the DPZ. Further studies are underway to apply the models to emulsions from different types of crude oils.  相似文献   

7.
Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the emulsion droplet size distribution, and then it was used for the emulsion stability analysis. It was found that among the four emulsion samples, North Sea emulsion with the lowest NaCl and TDS concentration of 24.12?g/L and 34.44?g/L remained stable up to almost 24 hours, while Red sea emulsion with the highest NaCl and TDS concentration of 32.39?g/L and 41?g/L became unstable after 6-hour period. This indicated that as the brine concentration increases, the w/o emulsion droplets would be larger due to the higher rate of aggregation and coalescence, and the emulsion stability decreases.  相似文献   

8.
A venturi scrubber is one of the most important devices for air pollution control. Although there are different models for predicting the pressure drop in venturi scrubbers, most of them have some defects and cannot predict the pressure drop correctly. In this study, for the first time, an Eulerian–Eulerian computational fluid dynamics (CFD) model is combined with a population balance equation to predict the pressure drop in venturi scrubbers. This simulation takes into account a multiple size group model for droplet dispersion and droplet size distribution, which is based on a population balance equation. Flow field has been calculated by solving the time averaged continuity and Navier–Stokes equations along with the standard kε turbulence model. The equations included drag, turbulent dispersion, and buoyancy forces. The calculated pressure drop with and without considering the population balance equation was compared with the experimental data to evaluate the accuracy of the CFD modeling. The size distribution of droplets in the venturi scrubber was studied at different points for different liquid to gas ratios and throat gas velocities. The results show that the maximum break-up of droplets happens at the liquid injection point. Finally, the effects of nozzle diameter and nozzle arrangement on pressure drop in venturi scrubbers were investigated.  相似文献   

9.
The migration of emulsion droplets under shear flow remains a largely unexplored area of study, despite the existence of an extensive literature on the analogous problem of solid particle migration. A novel methodology is presented to track the shear-induced migration of emulsion droplets based on magnetic resonance imaging (MRI). The work is in three parts: first, single droplets of one Newtonian fluid are suspended in a second Newtonian fluid (water in silicone oil (PDMS)) and are tracked as they migrate within a Couette cell; second, the migration of emulsion droplets in Poiseuille flow is considered; third, water-in-silicone oil emulsions are sheared in a Couette cell. The effect of (a) rotational speed of the Couette, (b) the continuous phase viscosity, and (c) the droplet phase concentration are considered. The equilibrium extent of migration and rate of migration increase with rotational speed for two different emulsion systems and increased continuous phase viscosity, leads to a greater equilibrium extent of migration. The relationship between the droplet phase concentration and migration is however complex. These results for semi-concentrated emulsion systems and wide-gap Couette cells are not well described by existing models of emulsion droplet migration.  相似文献   

10.
An efficient emulsification procedure for parenteral soybean oil‐in‐water, based on current know‐how on transitional inversion, was investigated. A fine droplet size lipid emulsion was produced using much lower mechanical energy than the typical industrial process. The aqueous phase was added gradually during mixing and various rates of water addition, as well as surfactant concentration, were evaluated. It was found that as addition rate and surfactant content increased, flow behavior changed significantly at intermediate water content, becoming highly viscoelastic. This behavior was related to the formation of a liquid crystalline phase that, at later mixing stages, turned into small droplets.  相似文献   

11.
The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented.  相似文献   

12.
For many food products emulsification processes play an important role. Examples are ice cream, spreads, sauces, etc. As is well known, droplet break-up and coalescence phenomena are the local processes underlying the control of particle size in an emulsion process. Quite a number of studies have generated scaling laws which can be easily applied and which are useful in the design of a process. However, the prediction of particle sizes in an inhomogeneous flow, where the flow velocity is changing spatially in strength and direction and with time, is not yet well established. For one-phase flows computational fluid dynamics (CFD) methodologies are in use to predict details on the flow with quite some success. This methodology has been extended to capture the dispersed phase in an efficient way. The essence is that break-up and coalescence processes determine source terms in a transport equation for the moments of the particle size distribution, while velocity vectors as obtained in the one-phase CFD simulation determine the convective term. This method allows particle size prediction in any equipment. The approach is illustrated for the particle size evolution of an oil-in-water emulsion, for a phase-separated biopolymeric mixture (a so-called water-in-water emulsion) and for the escape of the included oil droplets from a double emulsion of the type oil-in-water-in-oil. In all cases experimental results are compared with simulation results, which match very well. This shows the strength of the method.  相似文献   

13.
Physical and chemical modifications were made on the surface of the aluminum sheet to change the surface properties and superhydrophobic–hydrophilic wettability gradient surface was made on the perspex surface by using microstructure-pattering technique and self-assembled-monolayer method. By using high-speed video camera system and optical tensiometer, this paper discusses the influence of special surfaces with different wettability on spreading and motion of water, oil, and W/O emulsion droplets both experimentally and theoretically. In addition, the paper also discusses the influence of the superhydrophobic–hydrophilic wettability gradient on fluidity of W/O emulsion droplets and the coalescence process of droplets. The results showed that the contact angle of W/O emulsion droplets on the modified surfaces was related to the water and oil distribution at the three-phase line. On the wettability gradient surface, the droplet moved spontaneously when the droplet was located at the junction of the gradient. A quasi-steady theoretical model was used to analyze the driving and resistant forces acting on a droplet to improve the understanding of the self-transport behavior of the droplets.  相似文献   

14.
Emulsification processes results in the generation of droplets populations produced from the dynamic equilibrium between the breakup and coalescence phenomena determined primarily by the formulation and composition variables, mixing characteristics and emulsion preparation. The information contained in the UV‐vis spectrum on the absorption and scattering properties of the emulsions lead to the interpretation of the spectra in terms of the particle size distribution, the particle shape, and the chemical composition of the oil and emulsifier. This article reports analysis of emulsions on transmission spectrum as function of the oil concentration and physicochemical variables. The quantitative interpretation of the transmission spectrum is performed in the portion where no absorption is present (300–820 nm) leading to reliable estimated of droplet size populations in the range of 1 to 20 µm. The possibility of obtaining information from a single multiwavelength measurement makes UV‐vis spectroscopy a powerful tool for characterization of dispersed systems.  相似文献   

15.
Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found good agreement in the overall shape of the phases during droplet formation. An analytical model was derived from the insights that were gained from the CFD simulations, which describes the droplet diameter as a function of applied pressure. The analytical model covers the influence of both process parameters and geometry of the terrace well and can be used for fast optimization and evaluation studies.  相似文献   

16.
A challenging task in measuring droplet size is the ability to perform in-situ droplet size distribution analysis on multiphase fluids in their native states in the undisturbed environment. In this study, an inline two-dimensional low cost–high accuracy technique is presented for continuous measurement of spherical or non-spherical droplets in emulsions using image processing. The characteristic of the droplets is evaluated and the describe drop size distributions in different ranges is determined. This droplet size determination algorithm is based on both cellular neural networks and linear matrix inequality. Our main work focuses on the performance of the proposed methodology for exploring the dynamical evolution of such droplet size distributions by in-situ measurement. Moreover, the results were compared with those obtained using laser diffraction analyzer technique. It was proved that this method can efficiently characterize the quality of dispersed phase by determining droplet size distribution.  相似文献   

17.
When double emulsion droplets flow through a tapered nozzle, the droplets may break up and cause the core to be released. We model the system on the basis of the capillary instability and show that a droplet will not break up when the tilt angle of the nozzle is larger than 9°. For smaller tilt angles, whether the droplet breaks up also depends on the diameter ratio of the core of the droplet to the orifice of the nozzle. We verified this mechanism by experiments. The ideas are useful for the design of nozzles not only to break droplets for controlled release but also to prevent the droplet from rupturing in applications requiring the reinjection of an emulsion.  相似文献   

18.
Conventional droplet-based microfluidic systems require expensive, bulky external apparatuses, such as electric power supplies and pressure-driven pumps for fluid transportation. This study demonstrates an alternative way to produce emulsion droplets by autonomous fluid-handling based on the gas permeability of poly(dimethylsiloxane) (PDMS). Furthermore, basic concepts of fluid-handling are expanded to control the direction of the microfluid in the microfluidic device. The alternative pumping energy resulting from the high gas permeability of PDMS is used to generate water-in-oil (W/O) emulsions, which require no additional structures apart from microchannels. We can produce emulsion droplets by simple loading of the oil and aqueous solutions into the inlet reservoirs. During the operation of the microfluidic device, changes in droplet size, volumetric flow rate, and droplet generation frequency were quantitatively analyzed. As a result, we found that changes in the wetting properties of the microchannel greatly influence the volumetric flow rate and droplet generation frequency. This alternative microfluidic approach for preparing emulsion droplets in a simple and efficient manner is designed to improve the availability of emulsion droplets for point of care bioanalytical applications, in situ synthesis of materials, and on-site sample preparation tools.  相似文献   

19.
This paper deals with a phenomenon which plays an important role in the phase inversion process of emulsions. This process is governed by the interplay of coalescence of droplets, often leading to double emulsions, and the escape of those internal droplets. The latter process retards the inversion process. Coalescence has been the subject of many studies, contrary to the escape event. This paper addresses the escape process both theoretically and experimentally. The model developed analyses the rate of the escape of internal droplets from the mother droplet via a coalescence process, where the internal flow, as generated by the external flow, generates the viscous force for coalescence. Incomplete mixing in the droplet has been assumed. Experimental data on the escape rate of oil droplets from O/W/O emulsions have been analysed using a Computational Fluid Dynamics approach, where the model as indicated above has been incorporated. Experimental data and simulations compare very well. Data have been compared on varying the size of the inner droplets and the rotational speed of the vessel where the double emulsion has been formed and where the escape took place.  相似文献   

20.
The objective of this study was to establish the optimum conditions for preparing stable oil-in-water emulsions containing droplets surrounded by surfactant-chitosan layers. A primary emulsion containing small droplets (d32 approximately = 0.3 microm) was prepared by homogenizing 20 wt% corn oil with 80 wt% emulsifier solution (20 mM SDS, 100 mM acetate buffer, pH 3) using a high-pressure valve homogenizer. The primary emulsion was diluted with chitosan solutions to produce secondary emulsions with a range of oil and chitosan concentrations (0.5-10 wt% corn oil, 0-1 wt% chitosan, pH 3). The secondary emulsions were sonicated to help disrupt any droplet aggregates formed during the mixing process. The electrical charge, particle size, and amount of free chitosan in the emulsions were then measured. The droplet charge changed from negative to positive as the amount of chitosan in the emulsions was increased, reaching a relatively constant value (approximately +50 mV) above a critical chitosan concentration (C(Sat)), which indicated that saturation of the droplet surfaces with chitosan occurred. Extremely large droplet aggregates were formed at chitosan concentrations below C(Sat), but stable emulsions could be formed above C(Sat) provided the droplet concentration was not high enough for depletion flocculation to occur. Interestingly, we found that stable multilayer emulsions could also be formed by mixing chitosan with an emulsion stabilized by a nonionic surfactant (Tween 20) due to the fact the initial droplets had some negative charge. The information obtained from this study is useful for preparing emulsions stabilized by multilayer interfacial layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号