首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文通过在离子液体BmimPF6中原位热聚合甲基丙烯酸甲酯得到了透明的离子液体凝胶。通过交流阻抗测定,当BmimPF6与甲基丙烯酸甲酯的质量比为5∶1时,离子液体凝胶的导电率为1.33×10-3Scm-1。将通过电化学沉积制得的三氧化钨(WO3)和普鲁士蓝(PB)修饰FTO电极,与上述离子液体凝胶一起组装得到了全固态的电致变色器件。原位吸收光谱数据显示所制得的电致变色器件,在±2V的工作电压下,具有稳定的电致变色响应,其着色和褪色时间分别为4.5s和4.0s,着色效率达190cm2C-1(λ=660nm)。  相似文献   

2.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

There is a widely applied prospect of electrical controlled liquid crystal (LC) light-scattering device. Numerous electrical controlled LC light-scattering technologies have been studied, but each technology has its own shortcomings, such as high driving voltage, high hysteresis, complex electrode structure, and serious heating. In this work, the composite of LC and polymer microspheres are used to fabricate light-scattering devices. This device is operated by the vertical electric field and does not require complex preparation process. LC/polymer microsphere composite has the advantages of low driving voltage and zero hysteresis. The role of microspheres in the composites is to change the size and density of a refractive-index-mismatched micro-domain. The effects of the ratio, particle size, and refractive index of microspheres on the optical characteristics of a composite are studied. The normal directional light transmittance at the transparent state and light-scattering state decreases with an increasing weight ratio of microspheres. The particle size of microspheres has negligible influence on the electro-optical properties of composites when the weight ratio of microspheres is small. The LCs doped with Polymethylsilsesquioxane (PMSQ) microspheres or polymethyl methacrylate (PMMA) microspheres are compared, and the mismatched refractive index and density of micro-domain show the influence on the electro-optical properties of the composites.  相似文献   

4.
Formation of gratings upon alternating electric field in compositions of highly birefringent liquid crystal (LC) with novel chiral ionic liquid (CIL) enclosed in 10-µm-thick cells is studied. The compatibility of two organic components of the mixture is investigated. The grating is formed in 1–5% CIL mixtures and causes significant changes of the transmission of polarised light through the cells. Transmission of polarised λ = 633 nm light through the 5% CIL sample is studied with respect to frequency (1 Hz–3 MHz) and amplitude (up to 10 V) of alternating voltage and the results are used for sketch a voltage–frequency phase diagram. Two possible ways of formation of the gratings with perpendicular orientation to that formed from initial state are presented. Two twisting axes in the molecular alignments of the cholesteric LC gratings with perpendicular directions are proposed. Optical switch based on four different states of LC including two gratings with perpendicular directions is proposed. Moreover, behaviour of the rotation of a grating induced by AC field in hybrid planar-homeotropic cell is studied in two frequency regimes and rotation by more than 90° upon change of the AC field amplitude is observed.  相似文献   

5.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

6.
The reflectivity control device, initially developed for attitude control, is utilised to control the solar sail orbit by switching the states between absorption and specular reflection. Actually, the major parts of the device are the polymer-dispersed liquid crystal (PDLC) films. Here, PDLC films based on polyimide (PI) as polymer matrix and a low molecular weight LC can be prepared by the thermally induced phase separation (TIPS) method. The influences of cooling rate and the content of LC on the size and uniformity of LC droplets dispersed in a polymer matrix by a TIPS process were investigated. It was found that a fast cooling rate gave smaller droplet sizes and hence a more uniform distribution as compared to the ones produced under a slow cooling rate. If the LC content was increased, the droplet size would be increased. Furthermore, the effect of LC droplet size on the electro-optical properties of the PI-based PDLC films was discussed, such as transmittance, threshold voltage, driving voltage and contrast ratio (CR).  相似文献   

7.
In this paper, polymer-dispersed liquid crystal (PDLC) films which based on the acrylate and the thiol monomers were first prepared by ultraviolet-initiated polymerisation. The electro-optical properties and morphologies of the PDLC films were systematically investigated. The functionality of thiol monomers and their feed ratio showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol–acrylate reaction and acrylate monomer polymerisation reaction. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers. When added four-functional thiol monomer PETMP with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved.  相似文献   

8.
In this preliminary report we present the mesomorphic properties and electro-optic investigations of three new 'banana-shaped' mesogens. The materials are structurally similar to Niori's the original bent-core materials but possess alkylthio substituents in place of alkoxy substituents. Microscopic investigations revealed an unusual 'spiral-domain texture', similar to that observed in the 'B7' phase of related materials. Further investigations support our earlier observations that the materials display antiferroelectric switching in this phase, in two of the new materials studied. The nature of this phase, in comparison with the 'switchable' (B2) and 'chiral-domain' (B4) phases of the original materials, is discussed.  相似文献   

9.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

10.
In this article, we study the electro-optical (EO) properties of the homogeneous aligned nematic liquid crystal (N-LC) doped with cobalt oxide (Co3O4) nanoparticles (NPs). The EO characteristics of Co3O4 doped N-LC are higher performance, indicating lower threshold voltage (1.33 V), faster rising time (1.479 ms), and faster falling time (9.343 ms) than pure liquid crystal (LC) cells. We have demonstrated these results by investigating the relationship between dielectric constants and LC device properties. Furthermore, we proved NPs doped N-LC cells drive low power operation without capacitance hysteresis. Our experimental results were verified by software simulation based on general physical properties.  相似文献   

11.
This article proposes a methodology to prepare polymer dispersed liquid crystal (PDLC) films working in the reverse-mode operation, where the ion-doped nematic liquid crystals (NLCs) with negative dielectric anisotropy (Δε) were locked by polymer walls. On-state and off-state of films were controlled by an electric field. In the absence of an electric field, it appears to be transparent. In the field, the homogeneous alignment NLCs form dynamic scattering, giving rise to opaque. The effect of the cylindrical holes with different diameters of photo masks and liquid crystal Δε on the electro-optical properties and transmittance wavelength range of 400–3000 nm light of samples were investigated. It was found that it exhibited very good electro-optical characteristics, high contrast ratio and excellent infrared energy-efficient of films used as switchable windows.  相似文献   

12.
Effects of the content of fluorinated alkene-terminated liquid crystal (LC) molecules on the physical properties of the fluorinated alkene-terminated LC/E8 mixture were studied. The morphology and electro-optical properties as they doped in polymer-dispersed liquid crystal (PDLC) films were investigated. The detailed discussion of the obtained results is given. As a result, comparing with the physical properties of the series of LC mixtures with the same content of the analogous fully saturated compounds doped with E8, we find that the birefringence is significantly larger for the LC mixture with the alkene-terminated materials. Both fluorinated alkene-terminated LC molecules and the analogous fully saturated compounds doped with E8 reduce the driving voltage of PDLC films. Moreover, PDLC films with the fluorinated alkene-terminated LC molecules possessed higher contrast ratio and faster response time than that of the PDLC films prepared by adding the same mass fraction of the analogous fully saturated compounds. Thus, the ability to manipulate physical properties of LC mixture and electro-optical properties of PDLC films by changing the LC molecular structures may have future relevance for new LC structures design and applications of PDLC films.  相似文献   

13.
ABSTRACT

Polymer stabilised liquid crystal (PSLC) devices are widely used in various smart light modulation occasions. Their electro-optical properties can still be improved to address future challenges. It is well known that doping liquid crystal (LC) materials with nanoparticles can change the material’s electro-optical performance. In this study, silver nanoparticles (AgNPs) with size about 15–20 nm and surfactant were doped into PSLC devices. The effects of AgNPs doping on the PSLC electro-optical performances were studied. The result shows that AgNPs and surfactant doping can increase the dielectric anisotropy of LC mixture. PSLC devices with AgNPs doping have lower driving voltage and response time than un-doped PSLC devices. Therefore, doping of a specific concentration of AgNPs resulted in PSLC devices with improved electro-optical performance.  相似文献   

14.
ABSTRACT

The structures of the liquid crystal (LC) molecules have a key role in impacting the electro-optical performance of a polymer dispersed liquid crystal (PDLC) film. In this paper, the relationship between the LC molecular structures and the electro-optical properties of PDLC films is investigated based on an unexplored cyano-terminated tolane compounds (CTTCs) doped E8 LCs/UV polymers system. Due to the high polarity of CTTCs, LCs doped with the cyano-terminated tolane (CTT) molecules exhibit high birefringence and large positive dielectric anisotropy. On the whole, PDLC films doped with the CTT molecules exhibit a lower driving voltage than that doped with the pure E8. More excitingly, PDLC films based on CTT molecules with larger length-to-width ratio and longer conjugated system show higher contrast ratio (CR) and faster response time. Eventually, the mechanism of the effects of CTT-based molecular structures and the relationship between the electro-optical performance of PDLC films and CTT molecules are illustrated. This work paves a new way for optimising the electro-optical properties of PDLC films.  相似文献   

15.
The conductance of polymer matrix is an important factor for the property of the polymer dispersed liquid crystal (PDLC). The nanographites are dispersed into the polymer matrix for optimising the dielectric conductive property. The synthesised nanoparticles SiO2 was used as photonic crystal (PC) to work as a template for fabricating PDLC films. A mixture of pre-polymer and liquid crystals (LCs) was infiltrated into the void of the PC and polymerised under ultraviolet light. The void of the PC made uniform the dispersion of the liquid crystals in the films. The optical property of the PDLC films was optimised by doped nanographites and negative charge SiO2 template. The effect of negative charge SiO2 and nanographites on the threshold voltage and driving voltage was researched. The morphology of the PDLC films was studied by the FTIR image. The dispersed LCs droplets were uniformly affected by the addition of the nanographites. The LCs droplets dispersed in the polymer were located in the void of the SiO2 photonic crystal.  相似文献   

16.
To study effects of the crosslinking agent/diluents/thiol on morphology of the polymer matrix and the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films, samples were prepared by ultraviolet (UV)-initiated polymerisation. Due to the interaction between thiol–acrylate reaction and acrylate monomers polymerisation, the sample compositions were the foremost determinant to the microstructures which in turn played an essential role on the electro-optical properties of the PDLC films. With the increasing content of the crosslinking agent, the LC droplet size decreased, while the thiol had a contrary effect on the LC droplet size. It was demonstrated that the superior properties of the low-driven voltage (37.2 V), the high contrast ratio (148.2), the short response time (14.9 ms) and the high saturation transmittance (86.6%) could benefit from a novel microstructure which had a dense surface and meshes with microspheres attached. It was of great significance for the optimisation and the potential applications of the PDLC films.  相似文献   

17.
Ionic liquids and ionic liquid crystals of imidazolium salts composed of various transition and main group metals have been reviewed. Ionic metal complexes of imidazoles and N-heterocyclic carbenes possess the similar properties were also included. These types of ILs and ILCs have been realized as potential solvents, catalysts, catalyst precursors and reagents for many organic transformations and provide ecofriendly protocols. They have also been found to play key roles in material science. Many of these IL systems are air- and moisture stable and are considered as alternatives for air- and moisture sensitive chloroaluminate-based ILs.  相似文献   

18.
The first single crystal structure of a Group VA halide salt with three equivalent long n-alkyl chains, benzyltrioctadecylammonium bromide (BzN18Br), is reported. It consists of alternating interdigitated and non-interdigitated regions of alkyl chains separated by ionic planes. Two chains per molecule are paired and extend to one side in a non-interdigitated region. The third chain is on the opposite side of the ionic plane and pairs intermolecularly to form an adjacent, interdigitated region. The thickness of two nearly extended molecules defines the bilayer unit-two ionic planes flanked by a region with intramolecularly paired chains and separated by an interdigitated chain region. Powder X-ray diffraction and optical microscopy data of liquid crystalline BzN18Br are consistent with an enantiotropic smectic A2 (SmA2) phase: the three n-alkyl chains of each molecule are projected from one side of an ionic plane, and head groups of neighbouring molecules are oriented head-to-head, in a non-interdigitated bilayer assembly. The structure of BzN18Br fills an important gap in our knowledge about the crystal packing of ammonium and phosphonium salts with one-four equivalent long n-alkyl chains. A comparison of their packing arrangements is made and the transitional nature of the BzN18Br structures is demonstrated. Although salts with one, two, or three long n-alkyl chains form SmA2 phases, each is distinctive in its molecular packing. A large molecular reorganization accompanies the crystal-to-liquid crystal transition of BzN18Br.  相似文献   

19.
In this article, a newly synthesised ferroelectric liquid crystal (FLC) material, namely LAHS 22, has been characterised. The characterisation of the FLC material has been performed using dielectric relaxation spectroscopy, differential scanning calorimetry and polarisation optical microscopy. We observed an enhancement in the dielectric and electro-optical properties of the FLC material by incorporating gold nanoparticles (GNPs)-decorated multiwalled carbon nanotubes (MWCNTs). The GNPs-decorated MWCNTs cause an increment in dielectric dispersion (up to kHz), absorption, spontaneous polarisation and rotational viscosity of the FLC material. The pure and GNPs-decorated MWCNTs doped FLC cells were analysed by means of various dielectric spectroscopic and optical measurements. The observed enhancement in the dielectric and electro-optical properties of the FLC material has also been studied with concentration of GNPs-decorated MWCNTs in FLC material. The GNPs-decorated MWCNTs/FLC composites are not only of fundamental importance, but also useful materials for device applications such as liquid crystal displays and memory devices.  相似文献   

20.
We made comparative investigations on indium tin oxide (ITO) and single-layer graphene (SLG)-coated glass substrate as electrodes, specially for ferroelectric liquid crystal (FLC)-based system. We experimentally examined the comparative behaviour of important electro-optical FLC parameters for ITO- and SLG-based sample cells. The parameters are observed to be almost similar for both the cells. Interestingly, the value of threshold voltage is observed lower in SLG-based cell in comparison to that of conventional ITO/ITO cell. The presented results will definitely add a step to prove the suitability of graphene to be used as transparent electrodes in FLC-based display devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号