首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel polyacrylonitrile (PAN)–titanium oxide (TiO2) nanofiber adsorbent functionalized with aminopropyltriethoxysilane (APTES) was fabricated by electrospinning. The adsorbent was characterized by SEM, FTIR, TEG and BET analyses. The pore diameter and surface area of the adsorbent were 3.1 nm and 10.8 m2 g?1, respectively. The effects of several variables, such as TiO2 and amine contents, pH, interaction time, initial concentration of metal ions, ionic strength and temperature, were studied in batch experiments. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and double-exponential models. Two isotherm models, namely Freundlich and Langmuir, were used for analysis of equilibrium data. The maximum adsorption capacities of Th(IV), Ni(II) and Fe(II) by Langmuir isotherm were found to be 250, 147 and 80 mg g?1 at 45 °C with pH of 5, 6 and 5, respectively, and greater adsorption of Th(IV) could be justified with the concept of covalent index and free energy of hydration. Calculation of ΔG°, ΔH° and ΔS° demonstrated that the nature of the Th(IV), Ni(II) and Fe(II) metal ions adsorption onto the PAN–TiO2–APTES nanofiber was endothermic and favorable at a higher temperature. The negative values of ΔG° for Th(IV) showed that the adsorption process was spontaneous, but these values for Ni(II)and Fe(II) were positive and so the adsorption process was unspontaneous. Increasing of ionic strength improved the adsorption of Ni(II) and Fe(II) on nanofiber adsorbent but decreased the adsorption capacity of Th(IV). The adsorption capacity was reduced slightly after six cycles of adsorption–desorption, so the nanofiber adsorbent could be used on an industrial scale. The inhibitory effect of Ni(II) and Fe(II) on the adsorption of Th(IV) was increased with an increase in the concentration of inhibitor metal ions.  相似文献   

2.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

3.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

4.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

5.
This study contains the synthesis of silica gel-immobilized calix[4]arene derivative (TR-CL[4]P) as a new sorbent and its sorption studies towards Cu (II) ion in aqueous solution. The aldehyde pointed calix[4]arene derivative 5 was synthesized and then it was immobilized onto 3-aminopropilsilica gel (APS). In batch sorption experiments, the experimental results showed that TR-CL[4]P is effective sorbent towards Cu (II) ion. Therefore, the effect of solution pH, sorption time, temperature and initial metal ion concentration onto Cu (II) sorption was investigated. Maximum Cu(II) removal was obtained at 30?°C, 30?min and pH 6.0 for TR-CL[4]P and the batch sorption capacity was found as 17.8?mg/g. The characteristics of the sorption process for Cu (II) ion were evaluated by using the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms. Also, thermodynamic parameters, i.e., ΔG, ΔS, and ΔH were calculated for the system.  相似文献   

6.
Titanium dioxide nanoparticles (NPs) were employed for the sorption of Tl(III) ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, Tl(III) concentration, temperature, and amount of sorbent. The sorption was found to be fast and to reach equilibrium within 2 min, to be less efficient at low pH values, and to increase with pH and temperature. The sorption fits the Langmuir equation and follows a pseudo second order model. The mean energy of the sorption is approximately 15 kJ mol?1 as calculated from the Dubinin–Radushkevich isotherm. The thermodynamic parameters for the sorption were also determined, and the ΔH 0 and ΔG 0 values indicate endothermic behavior.  相似文献   

7.
In this work, a naturally occurring illite was characterized by using FT-IR and XRD technique to determine its surface functional groups and crystal structure. Sorption of 60Co(II) on illite as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature was studied under ambient condition using batch technique. The results indicated that the sorption of 60Co(II) on illite is strongly affected by pH values (2–9) and ionic strength. A positive effect of humic substances on 60Co(II) sorption was found at pH < 7.0, whereas a negative effect was observed at pH > 7.0. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on illite was endothermic and spontaneous.  相似文献   

8.
In this work, low-density vanillin-modified thin chitosan membranes were synthesized and characterized. The membranes were utilized as adsorbent for the removal of Cu(II) from aqueous solutions. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Langmuir model (average R2 > 0.99). Interactions thermodynamic parameters (ΔintH, ΔintG, and ΔintS), as well as the interaction thermal effects (Qint) were determined from T = (298 to 333) K. The thermodynamic parameters, the Dubinin–Radushkevick equation and the comparative values of ΔintH for some Cu(II)–adsorbent interactions suggested that the adsorption of Cu(II) ions to vanillin-chitosan membranes show average results for both the diffusional (endothermic) and chemical bonding (exothermic) processes in relation to the temperature range studied.  相似文献   

9.
The sorption of Cd(II) from aqueous solution on MnO2 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on MnO2 was an spontaneous and endothermic process.  相似文献   

10.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

11.
Adsorption equilibrium of methylene blue onto Fe-doped sulfated titania (FST) samples was studied at different temperatures (298, 303, and 308 K). Based on the wavelength scanning from 580 to 760 nm, the wavelength of maximum absorbance of methylene blue was determined to be 666 nm and the corresponding calibration curve can be described by the equation of A = 0.0068 + 0.1514C. The adsorption of methylene blue onto FST samples was conformed to the Langmuir isotherms. The absorption capacity of each FST sample for methylene blue increases with increasing temperature. The increase in the adsorption parameters (q m, b, and K 0) and the positive ΔH θ reveal the endothermic feature of this adsorption process. The negative ΔG θ shows the adsorption of methylene blue onto FST samples can be carried out spontaneously at the examined temperatures. Furthermore, with the calcination temperature increases, the variation in crystallization degree, the surface and the sulfur species will obviously influence the adsorption properties of FST samples and the thermodynamic parameters of this adsorption process.  相似文献   

12.
A Cd(II)-imprinted thiocyanato-functionalized silica gel adsorbent with high adsorption capacity was prepared by surface imprinting technique combined with sol–gel process for the selective adsorption of Cd(II) ion in aqueous solution, and was characterized by Fourier-transform infrared spectroscopy, nitrogen gas sorption and thermogravimetric analysis. The influences of different conditions (such as the pH of solutions, the contact time and the initial concentrations of Cd(II) ions) on the adsorption capacity of Cd(II) were investigated. The optimum pH of adsorption was in the range of 4–8.5. The adsorption equilibrium could be reached in 20 min. The relatively selectivity coefficients of the imprinted silica were higher than those of the non-imprinted adsorbents. Ho’s pseudo-second-order model well described the kinetics of the adsorption reaction. The adsorption process of metals followed Redlich–Peterson isotherm model, and the experimental value of maximum adsorption capacity for Cd(II) was 72.8 mg·g?1. The positive value of ΔH o suggested endothermic nature of Cd(II) adsorption on the imprinted silica adsorbent. Increase in entropy of adsorption reaction was shown by the positive value of ΔS o and the negative value of ΔG o indicating that the adsorption was spontaneous in nature.  相似文献   

13.
《Analytical letters》2012,45(18):3443-3456
Abstract

The modification of cross‐linked polyacrylamide (CPAAm) and incorporation of methyl thiourea (MeTU) or phenyl thiourea (PhTU) group were utilized in the preparation of two new chelating resins CPAAm‐EDA‐MeTU (resin I) and CPAAM‐EDA‐PhTU (resin II), [EDA=ethylenediamine]. The prepared resins were characterized by elemental analysis and IR spectroscopy. The sorption behaviors of Cd(II), Pb(II), and Zn(II) ions on the prepared resins were studied and the optimum sorption conditions for the tested metal ions were determined. The optimum pH value for the sorption of Cd(II) and Zn(II) ions on both resins I and II was ranged between 7–8. The prepared new resins show very little affinity towards Pb(II) ion. The maximum experimental sorption capacities of resin I towards Cd(II) and Zn(II) ions were 3.2 and 0.6 mmol g?1, respectively, and that of resin II were and 0.6 mmol g?1 in the same prescribed order. Langmuir and Freundlich isotherm constants and correlation coefficients for the present system were calculated and compared. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) for cadmium and zinc sorption on the prepared resins were also determined from the temperature dependence.  相似文献   

14.
Batch experiments are carried out for the sorption of La(III) onto commercial macroporous resins containing iminodiacetic (Lewatit TP 207) and aminomethylphosphonic acid groups (Lewatit TP 260). The operating variables studied are initial La(III) concentration, pH, temperature and contact time. Since the extraction kinetics were fast, with a mixture of 0.1 g of resin and 5 mL of lanthanum ions 0.5 × 10?3 mol L?1 solution, extraction equilibrium was reached within 30 min of mixing. The optimum pH values level for quantitative sorption were between 1.5 and 4.6 with Lewatit 207 and about 5.2 with Lewatit TP 260. The sorption capacities of Lewatit TP 207 and Lewatit TP 260 resins are 114.7 and 106.7 mg g?1, respectively. Adsorption equilibrium data were calculated for Langmuir and Freundlich isotherms. It was found that the sorption of La(III) on Lewatit TP 207 was better suited to the Langmuir adsorption model while Freundlich adsorption model fitted better sorption on Lewatit TP 260. Thermodynamics data leads to endothermic and spontaneous process. ΔG° decreases with increasing temperature indicating that sorption process of La(III) on both Lewatit TP 207 and Lewatit TP 260 was more favored at high temperature.  相似文献   

15.
A microcantilever was modified with a self-assembled monolayer (SAM) of L-cysteine for the sensitively and selectively response to Cu(II) ions in aqueous solution. The microcantilever undergoes bending due to sorption of Cu(II) ions. The interaction of Cu(II) ions with the L-cysteine on the cantilever is diffusion controlled and does not follow a simple Langmuir adsorption model. A concentration of 10?10 M Cu(II) was detected in a fluid cell using this technology. Other cations, such as Ni2+, Zn2+, Pb2+, Cd2+, Ca2+, K+, and Na+, did not respond with a significant deflection, indicating that this L-cysteine-modified cantilever responded selectively and sensitively to Cu(II).  相似文献   

16.
The nanoparticles of Cu‐Fe‐NO3 layered double hydroxide (LDH) were prepared with Cu/Fe molar ratio of 2:1 by a thermal process and co‐precipitation method at pH 9 and were characterized by X‐ray powder diffraction (XRPD), thermal gravimetric analysis (TGA), atomic adsorption spectroscopy (AAS) and fourier infrared spectroscopy (FT‐IR). The size and morphology of nanoparticles were examined by transmission electron microscopy (TEM). Cu‐Fe‐NO3‐LDH was studied as a potential adsorbent of the acid herbicide MCPA [(4‐chloro‐2‐methylphenoxy) acetic acid] as function of pH, contact time and temperature. The results showed high and rapid adsorption of MCPA on the LDH. The characterization of the adsorption products by XRD indicates that the intercalation of MCPA between the LDH layers has not occurred and surface adsorption has happened. The adsorption kinetic was tested for pseudo‐first‐order, pseudo‐second‐order, elovich and intra‐particle diffusion kinetic models and rate constants were calculated. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data obtained from the measurements of pesticide adsorption. Langmuir isotherm slightly better fitted to the experimental data than that of Freundlich. In the adsorption experiments, the Gibbs free energy ΔG0 values, the enthalpy ΔH0, and entropy ΔS0 were determined.  相似文献   

17.
The current paper presents a novel Pb(II) ion-imprinted silica-supported organic–inorganic hybrid sorbent functionalized with Schiff base by coupling a surface imprinting technique with a sol–gel process for the selective removal of Pb(II) ions from aqueous solution. Fourier transmission infrared spectroscopy, scanning electron microscopy, N2 adsorption–desorption isotherms and thermogravimetric analysis were used to characterize the Pb(II)-imprinted hybrid sorbent. The adsorption equilibrium was finished with 30 min. The experiment value of maximum adsorption capacity was found to be 54.9 mg g?1. There were not significantly influence on the adsorption capacity of Pb(II) in the range of pH 3.5–6.5. The equilibrium data were fitted very well to the Langmuir isotherm model and pseudo-first-order kinetics model. Under competitive adsorption conditions, the Pb(II)-imprinted hybrid sorbent was 3.09, 4.73, 3.34 and 4.96 times more selective than the corresponding non-imprinted sorbent for the systems of Pb(II)/Cu(II), Pb(II)/Cd(II), Pb(II)/Ni(II) and Pb(II)/Zn(II), respectively. The thermodynamic results demonstrated that the adsorption of Pb(II) onto the Pb(II)-imprinted hybrid sorbent took place by a spontaneous and endothermic process with further increase in the degree of freedom at the solid–solution interface.  相似文献   

18.
The application of newly synthesized Fe3O4/TiO2–SiO2 that is modified with zinc (FTSZ) as a sorbent, for the removal of arsenic from contaminated water has been investigated in the present study. SEM, FTIR, XRD, BET, Zeta potential sizer (ξ) analyses are used to determine the sorbent characterization. The effect of the operational parameters such as initial pH, initial concentration, and the contact time were studied. In addition, the equilibrium behavior of FTSZ in As(III) removal was investigated in the temperature range of 20–40 °C. The results showed that the equilibrium data were fitted well with Langmuir than Freundlich isotherm model. The maximum monolayer adsorption capacity estimated by Langmuir isotherm was 24.010 mg g?1. Thermodynamic parameters, ?H°, ?S° and ?G° were also calculated from graphical interpretation of the experimental data. Standard heats of sorption (?H°) were found to be endothermic and ?S° values were calculated to be positive for the sorption of As(III) onto the adsorbent.  相似文献   

19.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

20.
We prepared poly(N,N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels which could efficiently remove UO2 2+ from aqueous solutions. In this study, the effect of adsorption parameters such as pH value, adsorbent dose, shaking time, and temperature has investigated. It is found that the pseudo-second-order model is more suitable for our experiment. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 30 min. And there are very good correlation coefficients of linearized equations for Langmuir isotherm model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Langmuir isotherm model. The adsorption process was spontaneous (?G 0 < 0) and exothermic (?H 0 < 0). The adsorbed UO2 2+ can be desorbed effectively by 0.1 M HNO3 and the adsorption capacity is not significantly reduced after five cycles. Present study suggests that this P(DEA-co-AA) can be used as a potential adsorbent for sorption UO2 2+ and also provide a simple, fast separation method for removal of UO2 2+ ions from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号