首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between proteins and biomaterial surfaces correlate with many important phenomena in biological systems. Such interactions have been used to develop various artificial biomaterials and applications, in which regulation of non-specific protein adsorption has been achieved with bioinert properties. In this research, we investigated the protein adsorption behavior of polymer brushes of dendrimer self-assembled monolayers (SAMs) with other generations. The surface adsorption properties of proteins with different pI values were examined on gold substrates modified with poly(amidoamine) dendrimer SAMs. The amount of fibrinogen adsorption was greater than that of lysozyme, potentially because of the surface electric charge. However, as the generations increased, protein adsorption decreased regardless of the surface charge, suggesting that protein adsorption was also affected by density of terminal group.  相似文献   

2.
Quantifying the role of surface shape and physicochemical surface conditions on the interfacial reactivity of particles and substrates is fundamental to a multitude of natural and engineered surface adsorption phenomena. We consider continuum/jump regime adsorption at the gas or liquid interface of arbitrary regular solid surfaces with heterogeneous surface features. In particular, the 3-D boundary value problem (based on Laplace's diffusion equation) is converted into a 2-D integral equation for the adsorbate concentration at the particle surface. This accommodates numerical descretization via the implementation of 2-D Gauss-Legendre quadratures on an arrangement of high- and low-adsorption patch trace sites constructed to completely cover the particle surface. A generalized computer program is developed to solve the resulting linear algebra problem for the unkown local adsorption current densities. We investigate the role of various distributions of high- and low-adsorption sites for a generalized class of spheres which includes the DNA-like shaped twisted spheres. The biological implications of the role of surface curvature on interfacial adsorption/reactivity at particle surfaces are also discussed. Copyright 2001 Academic Press.  相似文献   

3.
MCM-22型分子筛中苯分子吸附行为的蒙特卡罗模 拟研究   总被引:3,自引:0,他引:3  
侯廷军  朱丽荔  徐筱杰 《化学学报》2000,58(10):1216-1220
用巨正则统计系综蒙特卡罗模拟方法研究了纯硅MCM-22型分子筛(ITQ-1)中苯分子的吸附行为。结果表明苯分子在ITQ-1型分子筛中主要存在4个吸附位点。从苯分子粒子分布云图上可以看到苯分子的扩散和吸附主要在12元环超笼内发生。在苯分子的扩散过程中,S2位置附近的苯分子分布较为集中,而S3和S4附近的苯分子分布则较为离散。苯分子通过10元环窗口的运动路径势能面的计算结果表明,苯分子在12元环超笼内可以较为自由迁移,而通过10元环窗口从一个超笼扩散到附近的超笼时则需要较高的激发能量,这个能量大约为100kJ/mol。  相似文献   

4.
Soft lithography based on photocurable perfluoropolyether (PFPE) was used to mold and replicate poly(styrene-b-isoprene) block-copolymer micelles within a broad range of shapes and sizes including spheres, cylinders, and torroids. These physically assembled nanoparticles were first formed in a selective solvent for one block then deposited onto substrates having various surface energies in an effort to minimize the deformation of the micelles due to attractive surface forces. The successful molding of these delicate nanoparticles underscores two advantages of PFPE as a molding material. First, it allows one to minimize particle deformation due to adsorption by using low energy substrates. Second, PFPE is not miscible with the organic micelles and thus prevents their dissociation. For spherical PS-b-PI micelles, a threshold value of the substrate surface energy for the mold to lift-off cleanly, that is, the particles remain adhered to the substrate after mold removal was determined to be around gamma congruent with 54 mJ/m2. For substrates with higher surface energies (>54 mJ/m2), the micelles undergo flattening which increase the contact area and thus facilitate molding, although at the expense of particle deformation. The results are consistent with theoretical predictions of a molding range for substrate surface energies, which depends on the size, shape, and mechanical properties of the particles. In a similar fashion, cylindrical PS-b-PI micelles remain on the substrate at surface energies gamma>or=54 mJ/m2 after a mold removal. However, cylindrical micelles behaved differently at lower surface energies. These micelles ruptured due to their inability to slide on the surfaces during mold lift-off. Thus, the successful molding of extended objects is attainable only when the particle is adsorbed on higher energy substrates where deformation can still be kept at a minimum by using stronger materials such as carbon nanotubes for the master.  相似文献   

5.
This paper tries to assess simply and quantitatively the link between classical adsorption theories and dielectric spectroscopy, in order to demonstrate that dielectric spectroscopy can be used as a tool of determination of surface energy variations due to movements of charge carriers at the surface of solids. A simple theory is developed to analyze hops of cations at the surface of mordenite, which are detected by complex impedance spectroscopy during adsorption of water. An energy of extraction of the cation can be determined from measurements and its dependence on the quantity of water molecules adsorbed is shown and qualitatively and quantitatively explained, using relationships developed in order to interpret adsorption phenomena generally. The agreement with other determinations of the adsorption energies and solid surface energy is correct.  相似文献   

6.
A novel synthetic approach for the efficient fabrication of Janus silica particles was demonstrated by embedment of zero-dimensional colloids on one-dimensional polymer fiber surfaces, followed by the surface modification on the exposed silica hemispheres. Electrospinning of poly(methyl methacrylate) and poly(4-vinyl pyridine) blends produced polymer fibers with high specific surface area and desired surface hydrophilicities. Fiber compositions determined the colloid adsorption density and uniformity. The colloid embedding resulted from the polymer softening was manipulated by the isothermal heat treatment. Subsequent silianization completed the amino functionalities on hemispherical surfaces of embedded silica colloids. Janus particles with uniform asymmetric chemical features were further labeled with gold nanoparticles before their recovery from fiber substrates. Fabrication of Janus particles, including colloid adsorption, temperature-driven embedding, and hemispherical surface modification, were investigated and are discussed.  相似文献   

7.
Graphitic carbon nitride (g‐CN) has emerged as a promising material for energy‐related applications. However, exploitation of g‐CN in practical devices is still limited owing to difficulties in fabricating g‐CN films with adjustable properties and high surface area. A general and simple pathway is reported to grow highly porous and large‐scale g‐CN films with controllable chemical and photophysical properties on various substrates using the doctor blade technique. The growth of g‐CN films, ascribed to the formation of a supramolecular paste, comprises g‐CN monomers in ethylene glycol, which can be cast on different substrates. The g‐CN composition, porosity, and optical properties can be tuned by the design of the supramolecular paste, which upon calcination results in a continuous porous g‐CN network. The strength of the porous structure is demonstrated by high electrochemically active surface area, excellent dye adsorption and photoelectrochemical and photodegradation properties.  相似文献   

8.
The effect of oxygen plasma treatment on the surface properties of tin-doped indium oxide (ITO) substrates and the changes in surface properties of treated ITO substrates with ageing time were investigated by X-ray photoelectron spectroscopy (XPS), contact angle and surface free energy measurements. Experimental results show that oxygen plasma treatment increases the oxygen concentration, decreases the carbon concentration, and enhances the surface free energy and polarity, and thereby improves the surface properties of ITO substrates. However, the improved ITO surface properties tended to decay and the surface free energy decreased, with ageing time. In addition, the ageing effect of treated ITO substrates on the performance of polymer light-emitting diodes (LEDs) was studied with respect to the driving voltage, electroluminescent luminance and efficiency. We observe that the ITO substrates aged for various times result in significant differences in optical and electrical characteristics which become worse as the ageing time increases. The optical and electrical performance of polymer LEDs is closely related to the surface properties of ITO substrate and the interface characteristics of ITO/polymer.  相似文献   

9.
The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.  相似文献   

10.
The Pro-His-Ser-Arg-Asn (PHSRN) sequence in fibronectin is a second cell-binding site that synergistically affects Arg-Gly-Asp (RGD). The PHSRN peptide also induces cell invasion and accelerates wound healing. We report on the surface immobilization of PHSRN by spontaneous adsorption on polysiloxane thin films which have different surface free energy characteristics. Low-surface energy (hydrophobic) polysiloxane and the corresponding high-surface energy (hydrophilic) surfaces obtained by UV–ozone treatments were used as adsorbing substrates. The peptide adsorption process was investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Both adsorption kinetics and peptide rearrangement dynamics at the solid interface were significantly different on the surface-modified films compared to the untreated ones. Fibroblast cells cultures at short times and in a simplified environment, i.e., a medium-free solution, were prepared to distinguish interaction events at the interface between cell membrane and surface-immobilized peptide for the two cases. It turned out that the cell-adhesive effect of immobilized PHSRN was different for hydrophobic compared to hydrophilic ones. Early signatures of cell spreading were only observed on the hydrophilic substrates. These effects are explained in terms of different spatial arrangements of PHSRN molecules immobilized on the two types of surfaces.  相似文献   

11.
Textural and energetic proprieties of kaolinite were studied by low-pressure argon adsorption at 77 K. The heterogeneity of four kaolinites (two low-defect and two high-defect samples) modified on their surface by cation exchange with Li+, Na+, or K+ was studied by DIS analysis of the derivative argon adsorption isotherms. The comparison between the derivative adsorption isotherms shows that the nature of the surface cation influences the adsorption phenomena on edge and basal faces. In the case of basal faces, two adsorption domains are observed: for the first one, argon adsorption is slightly sensitive to the nature of the surface cation; for the second one, argon adsorption energy depends on the nature of surface cation suggesting their presence on theoretically uncharged basal faces. This study also shows that the shape of elementary particles, as derived from basal and edge surface areas, changes with the nature of cation. This anomalous result is due to the decrease of edge surface area with increasing the size of the cation. This surface cation dependence can be accounted for the area occupied by the edge surface cations in the first argon monolayer.  相似文献   

12.
The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system.  相似文献   

13.
Vulcanizates of three acrylonitrile–butadiene copolymers were prepared by γ-ray irradiation. Two pyrogenic silicas of differing surface areas and with surface modifications were incorporated as fillers. Measurements of initial modulus, stress–strain hysteresis, tear energy, and swelling show little differences between the reinforcement effects of the various fillers, although the extent of filler reinforcement is related to the acrylonitrile content of the rubber. The considerable range of interaction energies implied by solution adsorption studies are not reflected in the reinforcement phenomena.  相似文献   

14.
The introduction of a second metal, gold, into a nickel matrix can effectively improve the catalytic performance and thermal stability of the catalysts toward steam reforming of methane. To investigate the effect of Au on the adsorption properties and electronic structure of the Ni(111) surface, we chose CO as a probe molecule and examined CO adsorption on various Au/Ni surfaces. It was revealed that Au addition weakened the absorbate–substrate interactions on the Ni(111) surface. With increasing gold concentration, the binding energy declines further. The variation of the binding energies has been interpreted by exploring the electronic structure of surface nickel atoms. The effect of gold can be quantitatively characterized by the slopes of the fitting equations between the binding energy and the number of gold atoms surrounding the adsorption site. Our results show that the binding energy at top sites can be approximately estimated by counting the number of surrounding gold atoms. On one specific surface, the relative magnitude of the binding energy can be simply judged by the distance between gold and the geometrical center of the adsorption site. This empirical rule holds true for C, H, and O adsorption on the Au/Ni surface. It may be applicable to a system in which a doped atom of larger atomic size is incorporated into the host metal surface by forming a surface alloy.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation–reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.  相似文献   

16.
Many unit operations required in microfluidics can be realised by electrokinetic phenomena. Electrokinetic phenomena are related to the presence of electrical surface charges of microfluidic substrates in contact with a liquid. As surface charges cannot be directly measured, the zeta potential is considered as the relevant parameter instead. PMMA is an attractive microfluidic substrate since micron‐sized features can be manufactured at low costs. However, the existence of PMMA surface charges is not well understood and the zeta potential data found in the literature show significant disagreement. In this article, we present a thorough investigation on the zeta potential of PMMA. We use computations of the potential distribution in the electrical double layer to predict the influence of various electrolyte parameters. The generated knowledge is compared to extensive experiments where we investigate the influence of ionic strength, pH, temperature and the nature of the electrolyte. Our findings imply that two different mechanisms influence the zeta potential depending on the pH value. We propose pure shielding in the acidic and neutral milieus while adsorption of co‐ions occurs along with shielding in the alkaline milieu.  相似文献   

17.
Calorimetric measurement of adsorption enthalpies of native lysozyme(Lyz) on a moderately hydrophobic surface at 25°C, pH 7.0 and various salt concentrations was performed. Based on the thermodynamics of stoichiometric displacement theory (SDT), we calculated the fractions of thermodynamic functions involving four subprocesses during a displacement adsorption process from the directly determined enthalpies in combination with adsorption isotherm measurements. The thermodynamic fractions reveal the relative degree of the four subprocesses for contributions to enthalpy, entropy and free energy. The results show that native Lyz adsorption on a moderately hydrophobic surface is an entropy driven process contributed mainly by conformational loss of adsorbed Lyz.  相似文献   

18.
This work seeks to characterize the UV–Vis absorption, SRES and fluorescence of methyl orange (MO) on silver colloids at different pH. The gradual changes of SERS signals indicate differing adsorption orientations of dyes on silver surface when pH changed and thus, results in different energy transfer efficiencies, i.e., the fluorescence quenching at 428 nm and synchronous enhancement at 560 nm changed gradually with pH increased by step-up. Both experimental evidence and theoretic analysis indicate that, different molecular structures and differing adsorption orientations of dyes on silver surface were existence when pH changed, and thereat caused the diverse spectral phenomena.  相似文献   

19.
The physical immobilization behavior of horseradish peroxidase (HRP) on cellulosic fiber surfaces was characterized using adsorption and inactivation isotherms measured by the depletion method followed by fitting of Langmuir’s and Freundlich’s models to the experimental data. The adsorption and inactivation behavior of simpler and relatively non-porous high and low crystalline cellulosic substrates (microcrystalline cellulose and regenerated cellulose) as well as more complex and porous cellulosic pulp fibers (bleached kraft softwood fibers) were investigated. The effect of the sorbent surface energy on HRP adsorption was demonstrated by increasing the hydrophobicity of the cellulosic fibers using an internal sizing agent. The influence of the fiber surface charge density on HRP adsorption was studied via modification of the cellulosic fibers using TEMPO (2,2,6,6-tetramethyl-1-piperidiniloxy radical)-mediated oxidation methods. Results showed that hydrophobic interactions had a much larger effect on HRP adsorption than electrostatic interactions. More hydrophobic fiber surfaces (lower polar surface energy) result in larger enzyme-fiber binding affinity constants and higher binding heterogeneity. It was also found that oxidation of the cellulosic fiber substrate reduces enzyme adsorption affinity but significantly increases the loading capacity per unit weight of the surface.  相似文献   

20.
The adsorption of asymmetrical triblock copolymers from a non-selective solvent on solid surface has been studied by using Scheutjens-Fleer mean-field theory and Monte Carlo simulation method on lattice model. The main aim of this paper is to provide detailed computer simulation data, taking A8-kB20Ak as a key example, to study the influence of the structure of copolymer on adsorption behavior and make a comparison between MC and SF results. The simulated results show that the size distribution of various configurations and density-profile are dependent on molecular structure and adsorption energy. The molecular structure will lead to diversity of adsorption behavior. This discrepancy between different structures would be enlarged for the surface coverage and adsorption amount with increasing of the adsorption energy. The surface coverage and the adsorption amount as well as the bound fraction will become larger as symmetry of the molecular structure becomes gradually worse. The adsorption layer becomes thicker with increasing of symmetry of the molecule when adsorption energy is smaller but it becomes thinner when adsorption energy is higher. It is shown that SF theory can reproduce the adsorption behavior of asymmetrical triblock copolymers. However, systematic discrepancy between the theory and simulation still exists.The approximations inherited in the mean-filed theory such as random mixing and the allowance of direct back folding may be responsible for those deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号