首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

2.
Lead-free [(1?x)(Na0.5Bi0.5)?xBa]Zr1?yTiyO3 ceramics (x = 0.06, 0.085, 0.09, 0.1 and y = 0.97) have been prepared by solid-state hot-pressing sintering process. The obtained samples reveal perovskite structure. Structural, thermal expansion, heat capacity, ferroelectric and dielectric measurements have been carried out on these samples in a wide temperature range. The broad anomalies were observed in thermal expansion and heat capacity, which approximately correspond to a structural, ferroelectric and dielectric properties anomaly. These anomalies can be related to temperature features of polar regions and a formation of long-range-order ferroelectric phase. The determined Burns temperature was found to increase with increasing Ba content. The obtained results are discussed in terms of local electric and strain fields caused by a difference in the ionic radii of (Na,Bi) and Ba, and Ti and Zr ions. The NBT–BTZ system is expected to be a new promising candidate for lead-free electronic ceramics.  相似文献   

3.
ABSTRACT

Lead-free (Na0.5Bi0.5)1?xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral–tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral–tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT–xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.  相似文献   

4.
ABSTRACT

The existence of Bi-fluctuation dispersing in Na0.5Bi0.5TiO3 (NBT) relaxor ferroelectric is hinted in other recent studies. However, this fluctuation has not been directly observed yet. We introduce the Bi-rich nano-regions with different sizes in a series of NBT ceramics by the slight excess of Bi3+ content. The crystal symmetries of the Bi-rich nano-regions and the NBT matrix are rhombohedral. The lattice parameters of the nano-regions are larger than those of the matrix in NBT ceramics, which were confirmed by the X-ray diffraction Rietveld refinement, TEM techniques and first-principles calculation. Also, the disorder-induced nano-regions appearing as Bi-fluctuation are associated with the complex phase transitions and the high-frequency relaxor behaviour of NBT suggested by the dielectric measurements and Raman spectra.  相似文献   

5.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

6.
Lead-free piezoelectric ceramics of (1?x?y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yLiNbO3 (BNT–BKT–LN-x/y) have been fabricated by a conventional solid-state reaction method, and their microstructure and electrical properties have been investigated. The results of X-ray diffraction (XRD) measurement show that K+, Li+ and Nb5+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The BKT and LN addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LN, the temperature for a ferroelectric–antiferroelectric phase transition is clearly reduced. The temperature dependence of dielectric properties suggests that the ceramics have diffuse-type phase transition characteristics. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 195 pC/N and 0.336 at x=0.18 and y=0.01.  相似文献   

7.
(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.  相似文献   

8.
Eu3+-doped Na0.5Bi0.5TiO3 (Eu:NBT) single crystals were grown by a top-seeded solution growth method. Photoluminescence emission and excitation spectra of Eu:NBT were investigated. The two transitions in 7F0 → 5D0 excitation spectra reveal that Eu3+ ions were incorporated into two adjacent crystallographic sites in NBT, i.e., Bi3+ and Na+ sites. The former has a symmetrical surrounding, while the later has a disordered environment, which was confirmed by decay curve measurements. The dielectric dispersion behavior was depressed and the piezoelectric and ferroelectric properties were improved after Eu doping.  相似文献   

9.
Lead-free (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics have been prepared by an ordinary sintering technique and their structure, ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction show that La2+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) exists at 0.04<x<0.10. Compared with pure Bi0.5Na0.5TiO3 ceramics, the (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics possess much smaller coercive field E c and larger remanent polarization P r. Because of the low E c (3.38 kV/mm), large P r (46.2 μC/cm2) and the formation of the MPB of rhombohedral and tetragonal phases, the piezoelectric properties of the ceramics are significantly enhanced at x=0.06: d 33=181 pC/N and k p=36.3%. The depolarization temperature T d reaches a minimum value near the MPB. The ceramics exhibit relaxor characteristic, which is probably a result from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both polar and non-polar regions at the temperatures above T d.  相似文献   

10.
High-quality, large-size lead-free (1 – x)Na0.5Bi0.5TiO3xBaTiO3 ((1 – x)NBT–xBT) single crystals (x = 0, 0.025, 0.0325 and 0.05) were grown using the Czochralski method. Dielectric and transmitted light intensity properties were measured for these crystals. The broad anomalies exhibited in the temperature dependence of the transmitted light corresponded to structural and dielectric anomalies and were related to the temperature dependence of polar regions and the appearance of a long-range ferroelectric state. We explain our results based on local electromechanical fields, by inhomogeneity of the ion distribution and the mismatch in ion size. We suggested that the NBT–BT system can be a promising lead-free piezoelectric material for ultrasonic delay-line applications, broadband transducers and sensors.  相似文献   

11.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

12.
The cerium modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics have been prepared by using the conventional mixed oxide method. X‐ray diffraction analysis revealed that the cerium modified NBT ceramics have a pure four‐layer Aurivillius phase structure. The piezoelectric activity of NBT ceramics was found significantly improved by the modification of cerium. The Curie temperature Tc, and piezoelectric coefficient d33 for the NBT ceramics with 0.50 wt% cerium modification were found to be 655 °C, and 28 pC/N respectively. The Curie temperature gradually decreased from 668 °C to 653 °C with the increase of cerium modification. The dielectric spectroscopy showed that the samples possess stable piezoelectric properties, demonstrating practical potential that for high temperature applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

14.
ABSTRACT

The (1-x)Na0.5Bi0.5TiO3- xBaTiO3 ceramics (x = 0.1, 0.135 and 0.17) were fabricated by a conventional solid phase sintering process. The bulk density of the obtained samples exceeded 95% of the theoretical relative density as determined by Archimedes method. Dielectric and ferroelectric measurements of these ceramics were performed. Measurements of the ferroelectric properties show that, above the depolarization temperature Td, the shape of the hysteresis loops approaches that of linear dielectrics. The dielectric study results correlate with the hysteresis loops measurements. The relaxor-like behavior of the investigated materials was revealed.  相似文献   

15.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

16.
0.979K0.5Na0.5Nb1‐xSbx O3‐0.021Bi0.5Na0.5TiO3 (KNNSx ‐BNT) lead‐free piezoelectric ceramics were fabricated by conventional solid state reaction technique, and their phase transition and electrical properties were studied. With the increase of x, the rhombohedral‐orthorhombic phase transition temperature of the ceramics increases. Finally, both the rhombohedral‐orthorhombic and orthorhombic‐tetragonal phase transitions of the ceramics were modified to be around room tempera‐ ture when about 6% Sb were substituted for the Nb site, resulting in the formation of a new phase boundary separating rhombohedral and tetragonal phases. The formation of the new phase boundary results in excellent properties for the ceramics, that is, the KNNS0.05‐BNT ceramic shows an enhancement in piezoelectric properties: d33 = 380 pC/N and kP = 0.438. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A phase diagram for the lead-free ceramics in the (1?x%)(0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3)–x%MnO2 (BNBKN-x%Mn) binary system is constructed for the first time based on the ferroelectric and dielectric measurements. The ferroelectric behaviors under different temperatures suggest that the ceramics are basically of relaxor anti-ferroelectric nature near room temperature. The temperature dependent dielectric properties show that when the addition of MnO2 increases, the relaxor anti-ferroelectric phase can be stabilized to be close to the Curie point, which corresponds to a relaxor anti-ferroelectric to paraelectric phase transition.  相似文献   

18.
In this study, monophasic Bax(Na0.5Bi0.5)1−xBi4Ti4O15 (x=0.03, 0.06, 0.09 and 0.12) ceramics fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. X-ray diffraction analysis revealed that the barium-modified Na0.5Bi4.5Ti4O15 ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties and phase transitions were studied and are explained in terms of lattice response of these ceramics. A shift in ferroelectric–paraelectric phase transition (Tc) to lower temperatures and a corresponding increase in permittivity peak with increasing concentration of Ba2+ are also observed. The decrease of orthorhombicity in the lattice structure by the larger Ba2+ ion incorporation, indicating an approach of a and b parameters, results in lower Curie temperature. The piezoelectric activity of Na0.5Bi4.5Ti4O15 (NBT) ceramics was significantly improved by the modification of barium. The Curie temperature Tc and piezoelectric coefficient d33 for the composition with x=0.12 were found to be 635 °C and 21 pC/N, respectively. The relationship of polarization with lattice response is discussed.  相似文献   

19.
(Na0.5Bix)0.93Ba0.07TiO3 (x=0.500-0.492) ceramics were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the amount of Bi deficiency. It was detected that the Bi deficiency had a considerable impact on the crystal structure and microstructure. The inspection of both the temperature dependence of the dielectric properties (free permittivity ε33T/ε0 and dielectric loss tan δ) and the evolution of the polarization-electrical field (P-E) hysteresis loops with measuring temperature suggests that the Bi deficiency served to increase the depolarization temperature (Td). The Bi deficiency led to an increase in the coercive field (Ec) and mechanical quality factor (Qm) together with a decrease in the remanent polarization (Pr) and piezoelectric constants (d33). The variation of the structure and electrical properties with Bi deficiency amount was qualitatively interpreted in terms of the formation of Bi and oxygen vacancies in the Bi-deficient specimens. This research indicates the importance of adequately controlling Bi stoichiometry of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics in obtaining the desired ferroelectric and piezoelectric properties.  相似文献   

20.
Lead‐free (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 (NBT‐BT6) nanofibers were synthesized by the sol–gel process and electrospinning, and a butterfly‐shaped piezoelectric response was measured by scanning force microscopy. NBT‐BT6 nanofibers with perovskite phase were formed, after being cleaned at 700 °C for 1 hour, and the diameters are in the range of 150 nm to 300 nm. The average value of the effective piezoelectric coefficient d33 is 102 pm/V. The high piezoelectricity may be attributed to the easiness for the electric field to tilt the polar vector of the domain and to the increase of the possible spontaneous polarization direction. There is a potential for the application of NBT‐BT6 nanofibers in nanoscale piezoelectric devices. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号