首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《先进技术聚合物》2018,29(2):814-819
The demulsification of the oily wastewater generated in the oil recovery process is very important in the crude oil exploitation. In present work, 10 block copolymers based on polyethyleneimine were synthesized, and their performances for treating oily wastewater were studied. The evaluation of demulsification efficiency, the effects of temperature, and the dosage on the treatment of oily wastewater by prepared copolymers were also investigated. To explore the causes of the differences, the interface activity of prepared copolymer molecules at water‐oil interface was investigated by the interfacial tension, and a mechanism diagram of demulsification of wastewater by the prepared copolymers was proposed. The demulsification of wastewater could be divided into 3 processes that were (1) adsorption, (2) congestion, and (3) coalescence. The prepared copolymer molecule acted as a hand in the oily wastewater to achieve the demulsification.  相似文献   

2.
The treatment of oilfield wastewater with high crude oil content and complex composition is a problem requiring considerable attention. In order to effectively remove crude oil contained in wastewater, in this work, rice straw, as an oil-absorbing material, was modified and used as a sorbent for crude oil. Rice straw was modified with alkali and cetyltrimethylammonium chloride (CTAC) by simple substitution reaction. The adsorption capacity of modified rice straw for oil was evaluated. The results illustrate that the adsorption rate of rice straw for crude oil was increased from 0.83 to 8.49 g/g, with the optimal conditions of 18% NaOH reacted for 90 min at 50 °C and 2% CTAC reacted for 60 min at 20 °C. The proposed modification method could be used for different materials to enhance the adsorption rate. The results of the contact angle test show that the modified straw changed from hydrophilic to hydrophobic, which may be the main reason for the improvement in the oil absorption rate. Finally, the surface structure of rice straw was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption–desorption isotherms, which further confirmed the hydrophobicity of the modified rice straw.  相似文献   

3.
Water-soluble surfactants based on rosin acids were synthesized from condensed rosin acid-formaldehyde. This was completed by esterification of series of rosin acid formaldehyde resins with poly(ethylene glycol) having different molecular weights to produce series of rosin esters. The structure of the produced resins was determined by infrared and 1HNMR analysis. The molecular weight of the produced surfactants was determined by gel permeation chromatography (GPC) technique. The surface properties of the prepared surfactants were determined by measuring the surface tension at different temperatures. The surface tension, critical micelle concentration (CMC), and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (πCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process were calculated and are discussed. The dispersion efficiency of the prepared surfactants as petroleum oil spill dispersants was determined and correlated with the surface activity, concentrations of the prepared surfactants and type of petroleum crude oil.  相似文献   

4.
Surfactants treatment of crude oil contaminated soils   总被引:4,自引:0,他引:4  
This study reports experimental measurements investigating the ability of a biological (rhamnolipid) and a synthetic (sodium dodecyl sulfate, SDS) surfactant to remove the North Sea Ekofisk crude oil from various soils with different particle size fractions under varying washing conditions. The washing parameters and ranges tested were as follows: temperature (5 to 50 degrees C), time (5 to 20 min), shaking speed (80 to 200 strokes/min), volume (5 to 20 cm3), and surfactant concentration (0.004 to 5 mass%). The contaminated soils were prepared in the laboratory by mixing crude oil and soils using a rotating cylindrical mixer. Two contamination cases were considered: (1) weathered contamination was simulated by keeping freshly contaminated soils in a fan assisted oven at 50 degrees C for 14 days, mimicking the weathering effect in a natural hot environment, and (2) nonweathered contamination which was not subjected to the oven treatment. The surfactants were found to have considerable potential in removing crude oil from different contaminated soils and the results were comparable with those reported in literature for petroleum hydrocarbons. The removal of crude oil with either rhamnolipid or SDS was within the repeatability range of +/-6%. The most influential parameters on oil removal were surfactant concentration and washing temperature. The soil cation exchange capacity and pH also influenced the removal of crude oil from the individual soils. However, due to the binding of crude oil to soil during weathering, low crude oil removal was achieved with the weathered contaminated soil samples.  相似文献   

5.
In the previous study, the oxidation behavior of four Chinese crude oils (Oil 1 to 4) in the presence and absence of rock cuttings was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) techniques and oxidation tube experiments. The present work investigates the thermal behavior of these oils by combining DTG–DTA method. First, we conducted comparative analysis about mass loss rate from DTG curves and endothermic/exothermic phenomenon from DTA curves attempting to clarify the endothermic or exothermic mechanism in crude oil low-temperature oxidation. Finally, we combined the thermal analysis method with low-temperature oil oxidation tube experiment in porous media to ascertain, whether the two methods are consistent in the aspect of low-temperature oxidation mechanism of crude oil by O2 consumption rate and CO2 generating rate (carbon bond stripping reaction rate). Results show that crude oils undergo an endothermic oxidation behavior during low-temperature oxidation stage, suggesting the decomposition of hydrocarbon components. Clay can play a catalytic effect on low-temperature oil oxidation. The results of DTG–DTA tests can also better reflect oil oxidation mechanism under real conditions.  相似文献   

6.
A clay impregnated with an ammonium chloride solution was activated in a micro-wave oven. Optimal conditions of activation were determined by bleaching tests of a degummed and neutralized crude edible oil. Optimum values (concentration of NH4Cl solution: 3M, heating time: 15 minutes) led to a material as effective as a commercial virgin bleaching earth in the treatment of an edible oil. The percent bleaching values calculated at 410 nm and 465 nm are 86% and 92%, respectively, for an oil processed by the micro-wave activated clay, against 77% and 93% for the same crude oil processed by a commercial virgin bleaching earth.  相似文献   

7.
隔膜式电解槽生物膜阴极降解苯酚的过程及其条件的优化   总被引:2,自引:0,他引:2  
以炼油废水中的主要污染物苯酚为目标污染物, 采用不同生物膜电极反应器对苯酚进行降解, 从而寻找出降解苯酚的最佳反应途径. 研究结果表明, 运用隔膜式电解槽生物膜阴极区域对苯酚废水进行处理, 其苯酚的去除效果虽然没有在生物膜阴极与阳极相混合的混合式反应器中处理效果好, 但在18 h内苯酚浓度降解到0, 并且其化学需氧量(COD)去除率最高, 在16 h内COD去除率达到80%. 对于隔膜式电解槽生物膜阴极区域的降解条件优化后发现, 电流设定为5 mA, 初始苯酚质量浓度低于200 mg/L, 温度为35 ℃时, 苯酚降解效果最佳.  相似文献   

8.
The preparation of pyrazolo pyrimidinone derivatives was performed by using five component reactions of phthalaldehyde, cyanomethylamine, electron deficient acetylenic compounds, isocyanate, hydrazine, and catalytic amounts of ZnO/Fe3O4-magnetic nanoparticles as a high performance catalyst under ultrasonic conditions at ambient temperature in aquause media at room temperature. It should be mentioned that this catalyst was prepared using Spinacia oleracea water extract. In addition, for investigation of antioxidant ability, radical trapping by DPPH and reducing power of ferric ion experiments was performed. As a result, synthesized compounds show excellent radical trapping by DPPH and good reducing ability of ferric ion. The current procedure has the benefits for instance excellent yield of reaction, green media, and easy separation of product and catalyst.  相似文献   

9.
Hydrophobically modified polyacrylamide (PAAm) was prepared by grafting PAAm with block copolymer of poly(ethylene oxide) and poly(propylene oxide), PEO‐PPO‐PEO, by melt method in the presence of benzoyl peroxide as initiator. The chemical structure of the graft copolymer was determined by FTIR and 1HNMR analyses. The surface tension, critical micelle concentration, and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (ΠCMC) were determined at different temperatures from the adsorption isotherms of the prepared surfactants. The prepared surfactant was tested as emulsifier for water with xylene, cyclohexane, or petroleum crude oil synthetic emulsions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Five comb-like copolymers derived from oleic acid-maleic anhydride were prepared and then esterified by long-chain fatty alcohol (POMA Cn), where n = 18, 20, 22. These polymers were characterized by FTIR and 1H NMR analysis. The molecular weight was determined by using gel permeation chromatography (GPC). The prepared copolymers were investigated as flow improvers and pour point depressants (PPD) for crude oil. From the evaluation, it was found that, the maximum depression of PP was obtained by (POMA2 C22) with long-chain alcohol (C22–OH) from 27°C to 15°C (ΔPP3000ppm = ?12°C). On the other side, it was remarked that no depression obtained by (POMA2 C18), which esterified by alcohol (C18–OH) at the same condition. The depression of pour point effectiveness was discussed on the light of polymers structure, molecular weights, and their concentrations. By analysis the results of the rheological flow properties, it was found that the POMA2 C22 enhanced the Bingham yield values (τβ). The τβ for crude oil without additives against 15, 27, and 39°C were 0.286, 0.131, and 0.075 Pa respectively, whereas the τβ for the treated crude oil with POMA2 C22 were 0.027, 0.022 and 0.010 Pa at 3000 ppm at the same temperatures. By using the photomicrography analysis, it was found that, the wax morphology was greatly modified to fine dispersed crystals of compact size.  相似文献   

11.
Surfactant based enhanced oil recovery (EOR) is an interesting area of research for several petroleum researchers. In the present work, individual and mixed systems of anionic and cationic surfactants consisting of sodium dodecyl sulphate (SDS) and cetyltrimethylammonium bromide (CTAB) in different molar ratios were tested for their synergistic effect on the crude oil-water interfacial tension (IFT) and enhanced oil recovery performance. The combination of these two surfactant systems showed a higher surface activity as compared to individual surfactants. The effect of mixed surfactant systems on the IFT and critical micellar concentration (CMC) is strongly depends on molar ratios of the two surfactant. Much lower CMC values were observed in case of mixed surfactant systems prepared at different molar ratios as compared to individual surfactant systems. The lowest CMC value was found when the molar concentration of SDS was higher than the CTAB. When the individual and mixed surfacant systems were tested for EOR performance through flooding experiments, higher ultimate oil recovery was obtained from mixed surfactant flooding compared to individual surfactants. Combination of SDS and CTAB or probably other anionic-cationic surfactants show synergism with substantial ability to reduce crude oil water IFT and can be a promising EOR method.  相似文献   

12.
In this study, the oxidation behavior of crude oils in the presence and absence of rock cuttings was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) techniques. Prior to these tests, the composition of cuttings and properties of crude oils were analyzed. Three obvious reaction regions were observed from the TG/DTG curves which are recognized as low-temperature oxidation (LTO), fuel deposition (FD), and high-temperature oxidation. The effects of light components (C7–15), heavy fractions (asphaltene, paraffin, resin), and cutting on oil oxidation behavior were analyzed. Kinetic analysis of crude oils and oil + cutting mixtures was performed by Arrhenius method, and the data were analyzed at last. Results show that high content C7–15 hydrocarbons can provide negative effect on the LTO behavior of crude oil. On the contrary, the high content unsaturated heavy hydrocarbons including asphaltene, paraffin, and resin are benefit for the oxidation performance. In addition, a shortened FD stage and higher peak temperature in LTO region are observed by addition of cutting. Cutting especially clay in it plays an active role of catalyzing in oil oxidation reaction.  相似文献   

13.
The objective of the present study was to investigate the potential use of applying polythiophene coating on magnetic Fe3O4 nanoparticles for the enhancement of asphaltene adsorption. Two stages of experimental were conducted. In the first stage, the ability of coated nanoparticles for asphaltene adsorption in synthetic asphaltene-toluene solution was evaluated. The effects of parameters such as nanoparticles concentration, initial concentration of asphaltene, and temperature were studied. In the second stage, the performance of the coated nanoparticles for the adsorption of asphaltene from crude oil was investigated under atmospheric pressure and a pressure-volume-temperature (PVT) apparatus was utilized for simulated reservoir conditions. Fe3O4 and Fe3O4-PT MNPs were synthesized using an effective co-precipitation method. The results of the first-stage tests indicated that the maximum adsorption capacity values for Fe3O4 and Fe3O4-PT MNPs were 0.79 and 1.09?mg?m?2, respectively. The optimum value of nanoparticles concentration was approximately determined as 10?g?L?1. According to the adsorption isotherms and kinetics, the Langmuir and pseudo-second-order Lagergren models were consistent with the experimental data, respectively. The average adsorption efficiencies for Fe3O4-PT and Fe3O4 MNPs were 78.98 and 65.94%, respectively. The results of the performed experiments on crude oil showed that Fe3O4-PT MNPs could adsorb asphaltenes from crude oil in a similar trend as synthetic asphaltene-toluene solution.  相似文献   

14.
Complex investigations on development of efficient technology of contact cleaning of wastewater from oil pollution was carried out. This technology is based on processes of sorption, ion exchange, and subsequent sedimentation. It is shown that modified sorbents prepared on the basis of cellulose, polygorskite, and activated carbon effectively clean water from oil and oil products, where the degree of cleaning reaches over 98–99%. It is found that the sorption coefficient (K a) increases with the increase in the dispersity of sorbents, and the consumption of sorbent (g/100 ml) decreases.  相似文献   

15.
Oil and gas wastewater refers to the waste stream produced in special production activities such as drilling and fracturing. This kind of wastewater has the following characteristics: high salinity, high chromaticity, toxic and harmful substances, poor biodegradability, and a difficulty to treat. Interestingly, nanomaterials show great potential in water treatment technology because of their small size, large surface area, and high surface energy. When nanotechnology is combined with membrane treatment materials, nanofiber membranes with a controllable pore size and high porosity can be prepared, which provides more possibilities for oil–water separation. In this review, the important applications of nanomaterials in wastewater treatment, including membrane separation technology and photocatalysis technology, are summarized. Membrane separation technology is mainly manifested in ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). It also focuses on the application of semiconductor photocatalysis technology induced by TiO2 in the degradation of oil and gas wastewater. Finally, the development trends of nanomaterials in oil and gas wastewater treatment are prospected.  相似文献   

16.
Methylated polycyclic aromatic hydrocarbons (PAHs) are suspected to be some of the toxic compounds in crude oil towards marine life and are needed as single compounds for environmental studies. 1-, 3- and 6-methylchrysene (3a,b,c) were prepared as single isomers by photochemical cyclization of the corresponding stilbenoids in the Mallory reaction using stoichiometric amounts of iodine in 82-88% yield. 2-methylchrysene (3d) was prepared by photochemical cyclization where the regioselectivity was controlled by elimination of an ortho-methoxy group under acidic oxygen free conditions in 72% yield. These conditions failed to form 4-methylchrysene from the corresponding stilbenoid. All stilbenoids were made from a common naphthyl Wittig salt and suitably substituted benzaldehydes. We have also demonstrated that methylchrysenes can be oxidized to the corresponding chrysenecarboxylic acids by KMnO4 in modest yields.  相似文献   

17.
The analysis of light crude oil for oxidation reaction experiments is a kind of important technological for evaluating an air injection project in a reservoir. In this study, the paper comprehensively analyzes the variations of Jilin crude oil composition comparing crude oil component’s variations before and after oxidation, and investigates the effluent gas composition and hydrocarbon, analyzes the mechanism of low temperature oxidation reaction (LTO), and rebuilds the light crude oil cracking reaction of intermediate component in a new pattern. In the early stage of the oxidation reaction, firstly, oxygen is captured by forming chemical bond in liquid hydrocarbon. And then oxygen takes part in the free radical chain reaction by forming hyperoxide and decomposes to ketones, aldehydes, alcohols, and so on. Meanwhile, chain scission reaction comes up. Research result shows that the intermediate components (C7–17) of crude oil make great contribution to crude oil cracking. The experimental result shows that Jilin reservoir has the potential of implementing air injection project.  相似文献   

18.
S-doped graphene quantum dots (S-GQDs) with well crystallization and monodispersity were prepared and applied as novel nanophotocatalyst for visible light degradation of basic fuchsin.  相似文献   

19.
20.
The concentration and size of suspended solids (SS) in the treated produced water beyond the criteria of injection water in Daqing oilfield have raised great concerns in recent years. The SS in produced water from water, polymer and alkali–surfactant–polymer (ASP) flooding were successfully separated and characterized using some analytical techniques in this study. X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and heating method reveal that some organic compounds besides crude oil were present in the SS samples, and polyacrylamide was found in the SS from polymer and ASP flooding. X-ray diffraction (XRD) shows some crystal inorganic substances such as SiO2, Fe2O3, Fe3O4, and BaSO4 in the SS samples, and XPS analysis indicated that several iron compounds with different valences were present in the three SS samples. The mean diameters of three SS samples were 22.89, 11.28 and 17.61 μm, respectively. Most importantly, the aggregates formed by the SS and oil droplets as well as the small SS adsorbed on the surface of oil droplets were observed using a microscope, indicating that the SS can be removed with crude oil, and crude oil also contributes to the determination of the SS values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号