首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium solubility of acetaminophen in methanol + water binary mixtures at 298.15 K was determined and correlated with the JouybanAcree model. Preferential solvation parameters by methanol (δx1,3) were derived from their thermodynamic solution properties by means of the inverse KirkwoodBuff integrals method. δx1,3 values are negative in water-rich mixtures but positive in compositions from 0.32 in mole fraction of methanol to pure methanol. It is conjecturable that in the former case, the hydrophobic hydration around non-polar groups plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behavior of this cosolvent.  相似文献   

2.
The equilibrium solubility of benzocaine (BZC) in several {methanol (1) + water (2)} mixtures at 298.15 K was determined. Solubility values are expressed in mole fraction and molarity and were calculated with the Jouyban–Acree model. Preferential solvation parameters of BZC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals method. δx1,3 values are negative in water-rich mixtures (0.00 < x1 < 0.32) but positive in the other mixtures (0.32 < x1 < 1.00). To explain the preferential solvation by water in the former case, it is conjecturable that the hydrophobic hydration around non-polar groups of BZC plays a relevant role in the solvation. Moreover, the higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol regarding water.  相似文献   

3.
The preferential solvation parameters of methocarbamol in dioxane + water, ethanol + water, methanol + water and propylene glycol + water mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals (IKBI) method. This drug is sensitive to solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and co-solvent-rich mixtures, but positive in mixtures with similar proportions of solvents, except in methanol + water mixtures, where positive values are found in all the methanol-rich mixtures. It is conjecturable that the hydrophobic hydration around the non-polar groups in water-rich mixtures plays a relevant role. Otherwise, in mixtures of similar solvent compositions, the drug is mainly solvated by co-solvent, probably due to the basic behaviour of the co-solvents; whereas, in co-solvent-rich mixtures, the preferential solvation by water could be due to the acidic behaviour of water. Nevertheless, the specific solute–solvent interactions present in the different binary systems remain unclear.  相似文献   

4.
The preferential solvation parameters by propylene glycol (PG) of the homologous series of the n-alkyl esters of p-hydroxybenzoic and p-aminobenzoic acids, namely, methyl, ethyl, propyl and butyl derivatives, were derived from their thermodynamic properties of solution by means of the inverse Kirkwood–Buff integrals (IKBI) method. The preferential solvation parameters by the cosolvent, δx1,3, are negative in water-rich mixtures, but positive in PG-rich mixtures, and the relative magnitudes of δx1,3 are proportional to the alkyl chain length despite of the solvent involved in the preferential solvation, i.e. PG or water. It is possible that the hydrophobic hydration around aromatic ring and/or methylene groups plays a relevant role in the drugs solvation in water-rich mixtures. The more solvation by PG in PG-rich mixtures could be due mainly to polarity effects and acidic behaviour of the hydroxyl or amine groups of the compounds in front to the more basic solvent present in the mixtures, i.e. PG.  相似文献   

5.
6.
The preferential solvation parameters of indomethacin and naproxen in ethyl acetate + ethanol mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals method. It is found that both drugs are sensitive to solvation effects, so the preferential solvation parameter, δxEA,D, is negative in ethanol-rich and ethyl acetate-rich mixtures but positive in compositions from 0.36 to 0.71 in mole fraction of ethyl acetate. It is conjecturable that in ethanol-rich mixtures, the acidic interaction of ethanol on basic sites of the analgesics plays a relevant role in the solvation. The more solvation by ethyl acetate in mixtures of similar co-solvent compositions could be due to polarity effects. Finally, the slight preference of these compounds for ethanol in ethyl acetate-rich mixtures could be explained as the common participation of basic sites in both solvents and the acidic site of ethanol. Nevertheless, the specific solute–solvent interactions remain unclear.  相似文献   

7.
The preferential solvation parameters of phenobarbital in aqueous binary mixtures of 1,4-dioxane, t-butanol, n-propanol, ethanol, propylene glycol and glycerol were derived from solution thermodynamic properties by using the IKBI method. This drug is sensitive to preferential solvation effects in all these mixtures. The preferential solvation parameter by the cosolvent (δx1,3) is negative in almost all the water-rich mixtures but positive in mixtures with similar proportions of solvents and cosolvent-rich mixtures, except in 1-propanol + water mixtures, where negative values are also found in mixtures with x1 ≥ 0.70. Hydrophobic hydration around the non-polar ethyl and phenyl groups of this drug in water-rich mixtures could play a relevant role in drug solvation. Otherwise, in mixtures of similar solvent compositions and in cosolvent-rich mixtures the preferential solvation by cosolvent could be due to the acidic behaviour of the drug.  相似文献   

8.
The mole fraction solubility of phenacetin (PNC) in methanol + water binary solvent mixtures at 298.15 K was determined along with density of the saturated solutions. All these solubility values were correlated with the Jouyban–Acree model. Preferential solvation parameters of PNC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals (IKBI) method. δx1,3 values are negative in water-rich mixtures but positive in methanol mole fraction of >0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of PNC plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.  相似文献   

9.
The solubility of lamotrigine (LTG), clonazepam (CZP) and diazepam (DZP) in some {cosolvent (1) + water (2)} mixtures expressed in mole fraction at 298.15 K was calculated from reported solubility values expressed in molarity by using the densities of the saturated solutions. Aqueous binary mixtures of ethanol, propylene glycol and N-methyl-2-pyrrolidone were considered. From mole fraction solubilities and some thermodynamic properties of the solvent mixtures, the preferential solvation of these drugs by both solvents in the mixtures was analysed by using the inverse Kirkwood–Buff integrals. It is observed that LTG, CZP and DZP are preferentially solvated by water in water-rich mixtures in all the three binary systems analysed. In {ethanol (1) + water (2)} mixtures, preferential solvation by water is also observed in ethanol-rich mixtures. Nevertheless, in {propylene glycol (1) + water (2)} and {N-methyl-2-pyrrolidone (1) + water (2)} mixtures preferential solvation by the cosolvent was observed in cosolvent-rich mixtures.  相似文献   

10.
Sucrose is the most widely used sweetener in food and pharmaceuticals. Solubility data of this excipient in aqueous cosolvent mixtures is not abundant. Thus, the main objective of this research was to determine and correlate the equilibrium solubility of sucrose in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Cosolvents were ethanol, propylene glycol and glycerol. Shaken flask method was used to determine isothermal solubility. Concentration measurements were performed by means of density determinations. Solubility of sucrose decreases non-linearly with the addition of cosolvent to water. By means of the inverse Kirkwood–Buff method it is shown that sucrose is preferentially solvated by cosolvent in water-rich mixtures but preferentially solvated by water in cosolvent-rich mixtures. Jouyban–Acree model correlates solubility values with the mixtures composition for all cosolvent systems. Moreover, apparent specific volume of sucrose was also calculated from density and compositions.  相似文献   

11.
The equilibrium solubility and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K was reported. Mole fraction solubility varies continuously from 2.85 × 10–9 in neat water to 2.39 × 10–3 in neat 1,4-dioxane. Solubility behaviour was adequately correlated by means of the Jouyban-Acree model. Based on the inverse Kirkwood-Buff integrals, preferential solvation parameters were calculated. Triclocarban is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.18) and also in 1,4-dioxane-rich mixtures (0.78 < x1 < 1.00) but preferentially solvated by 1,4-dioxane in mixtures with similar solvent compositions.  相似文献   

12.
The preferential solvation parameters (δx1,3) of indomethacin (IMC) in 1,4-dioxane + water binary mixtures were derived from their thermodynamic properties by means of the inverse Kirkwood–Buff integrals method. δx1,3 is negative in water-rich and 1,4-dioxane-rich mixtures but positive in cosolvent compositions from 0.17 to 0.69 in mole fraction of 1,4-dioxane at 298.15 K. It is conjecturable that in water-rich mixtures, the hydrophobic hydration around the aromatic and methyl groups of the drug plays a relevant role in the solvation. The higher solvation by 1,4-dioxane in mixtures of similar cosolvent compositions could be mainly due to polarity effects. Finally, the preference of this drug for water in 1,4-dioxane-rich mixtures could be explained in terms of the higher acidic behavior of water molecules interacting with the hydrogen-acceptor groups present in IMC.  相似文献   

13.
The excitation energy of Brooker's merocyanine in water–methanol mixtures shows nonlinear behavior with respect to the mole fraction of methanol, and it was suggested that this behavior is related to preferential solvation by methanol. We investigated the origin of this behavior and its relation to preferential solvation using the three‐dimensional reference interaction site model self‐consistent field method and time‐dependent density functional theory. The calculated excitation energies were in good agreement with the experimental behavior. Analysis of the coordination numbers revealed preferential solvation by methanol. The free energy component analysis implied that solvent reorganization and solvation entropy drive the preferential solvation by methanol, while the direct solute–solvent interaction promotes solvation by water. The difference in the preferential solvation effect on the ground and excited states causes the nonlinear excitation energy shift. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Sodium-23 NMR chemical shifts and linewidths have been measured for 0.1M NaClO4 in binary mixtures of N-methylformamide (NMF) with a series of other solvents, as a function of the solvent mole fraction. The relative solvent composition at the isosolvation point, the mid-value of the Na-23 chemical shift between those measured in the respective pure solvents, reveals preferential solvation of the sodium cation in many cases. The isosolvation composition correlates well with the relative solvating abilities of the two solvents-as characterized by their donicities-provided that the cation-solvent interactions are of the hard-hard type and that they are not complicated by interionic interactions. The variation in the electric field gradient around the sodium nucleus, as the composition of the solvent changes, results in broadening of the resonance line. Maximum broadening occurs close to the solvent mole fraction corresponding to the isosolvation point.  相似文献   

15.
16.
Solubility measurements were performed for bosentan (BST) in binary mixtures of propylene glycol (PG) and water at atmospheric pressure within the temperature range, T = 293.2 – 313.2 K by employing a shake-flask method. Generated solubility data were correlated with Jouyban-Acree-van’t Hoff model and the accuracies of the predicted solubilities and model performance were illustrated by mean relative deviations (MRD). Furthermore, the apparent thermodynamic properties of BST dissolving in all the mixed solvents were calculated, and the obtained results show that the dissolution process is endothermic. By using the inverse Kirkwood–Buff integrals, it was observed that BST is preferentially solvated by water in water-rich solvent mixtures and preferentially solvated by PG (as a cosolvent) in the composition range of 0.20 < x1 < 1.00 at 298.2 K.  相似文献   

17.
The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equations. The solubility was maximal in 0.95 mass fraction of 1,4-dioxane and very low in pure water at all the temperatures. A non-linear plot of ΔHsoln ° vs. ΔGsoln ° with negative slope from pure water up to 0.60 mass fraction of 1,4-dioxane and positive beyond this up to 0.95 mass fraction of 1,4-dioxane was obtained. Accordingly, the driving mechanism for IMC solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug non-polar moieties by 1,4-dioxane, whereas, above 0.60 mass fraction of 1,4-dioxane the driving mechanism is the enthalpy, probably due to IMC solvation increase by the co-solvent molecules. The preferential solvation of IMC by the components of the solvent was estimated by means of the quasi-lattice quasi-chemical method, whereas the inverse Kirkwood-Buff integral method could not be applied because of divergence of the integrals in intermediate compositions.  相似文献   

18.
The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.  相似文献   

19.
Solubility of sulfamethazine (SMT) in acetonitrile (MeCN) + methanol (MeOH) cosolvents was determined at nine temperatures between 278.15 and 318.15 K. From the solubility data expressed in molar fraction, the thermodynamic functions of solution, transfer and mixing were calculated using the Gibbs and van ’t Hoff equations; on the other hand, the solubility data were modeled according to the Wilson models and NRTL. The solubility of SMT is thermo-dependent and is influenced by the solubility parameter of the cosolvent mixtures. In this case, the maximum solubility was achieved in the cosolvent mixture w0.40 at 318.15 K and the minimum in pure MeOH at 278.15 K. According to the thermodynamic functions, the SMT solution process is endothermic in addition to being favored by the entropic factor, and as for the preferential solvation parameter, SMT tends to be preferentially solvated by MeOH in all cosolvent systems; however, δx3,1<0.01, so the results are not conclusive. Finally, according to mean relative deviations (MRD%), the two models could be very useful tools for calculating the solubility of SMT in cosolvent mixtures and temperatures different from those reported in this research.  相似文献   

20.
The solubility of hesperidin in some {cosolvent (1) + water (2)} mixtures expressed in mole fraction at temperatures from 293.15 K to 333.15 K reported by Xu et al. has been used to calculate the apparent thermodynamic functions, Gibbs energy, enthalpy, and entropy, of the dissolution processes by means of the van’t Hoff and Gibbs equations. Non-linear enthalpy–entropy relationships were observed for this drug in the plots of enthalpy vs. Gibbs energy of dissolution with positive or negative slopes regarding mixtures composition and/or cosolvent. Moreover, the preferential solvation of hesperidin by the cosolvents was analysed by using the inverse Kirkwood–Buff integrals observing that this drug is preferentially solvated by water in water-rich but preferentially solvated by cosolvents in mixtures 0.20 (or 0.24) ≤ x1° ≤ 1.00. Furthermore, a new mathematical model was proposed for correlating/predicting the solubility of hesperidin in binary solvent mixtures at various temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号