首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The solubilities of cefmetazole acid in methanol, ethanol, isopropanol and water were determined experimentally by using the saturation shake-flask method within the temperature range from (278.15 to 303.15) K under pressure p?=?101.1 kPa. At a fixed temperature, the cefmetazole acid solubility falls in the order methanol?>?ethanol?>?isopropanol?>?water. The apparent dissolution enthalpy, dissolution entropy and Gibbs energy change were calculated. The acquired solubilities were correlated with Apelblat’s equation. The largest value of relative average deviation for mole fraction solubility was 0.45 × 10?2, and of root-mean-square deviation, 0.747 × 10?5. The type and extent and direction of solute–solvent interactions were identified using the concept of Linear Solvation Energy Relationship. In addition, the preferential solvation parameters (δx1,3) of cefmetazole acid in co-solvent mixtures of methanol (1)?+?water (2), ethanol (1)?+?water (2) and isopropanol (1)?+?water (2) were derived via the inverse Kirkwood–Buff integrals method. At 298.15 K, the magnitude of preferential solvation of cefmetazole acid by the co-solvent is highest in methanol mixtures, followed by ethanol mixtures, and finally by isopropanol mixtures.  相似文献   

2.
The preferential solvation parameters of indomethacin and naproxen in ethyl acetate + ethanol mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals method. It is found that both drugs are sensitive to solvation effects, so the preferential solvation parameter, δxEA,D, is negative in ethanol-rich and ethyl acetate-rich mixtures but positive in compositions from 0.36 to 0.71 in mole fraction of ethyl acetate. It is conjecturable that in ethanol-rich mixtures, the acidic interaction of ethanol on basic sites of the analgesics plays a relevant role in the solvation. The more solvation by ethyl acetate in mixtures of similar co-solvent compositions could be due to polarity effects. Finally, the slight preference of these compounds for ethanol in ethyl acetate-rich mixtures could be explained as the common participation of basic sites in both solvents and the acidic site of ethanol. Nevertheless, the specific solute–solvent interactions remain unclear.  相似文献   

3.
The preferential solvation parameters of ketoprofen (KTP) in ethanol (EtOH) + water and propylene glycol (PG) + water binary solvent mixtures were obtained from their thermodynamic properties by means of the inverse Kirkwood–Buff integrals (IKBI) and quasi-lattice quasi-chemical methods. According to the IKBI method, it is found that KTP is very sensitive to specific solvation effects, so the preferential solvation parameter by co-solvents, δx 1,3, is negative in the water-rich mixtures of both binary systems but positive in the other compositions at temperatures of 293.15, 303.15 and 313.15 K. From this it can be assumed that, in water-rich mixtures, hydrophobic hydration around the aromatic rings and the methyl group, present in the drug, plays a relevant role in the solvation. The bigger amount of drug solvation by the co-solvent in mixtures of similar solvent proportions and in co-solvent-rich mixtures could be due mainly to polarity effects. Moreover, in these mixtures the solute will be acting as a Lewis acid with the co-solvent molecules, because they are more basic than water.  相似文献   

4.
The equilibrium solubility of acetaminophen in methanol + water binary mixtures at 298.15 K was determined and correlated with the JouybanAcree model. Preferential solvation parameters by methanol (δx1,3) were derived from their thermodynamic solution properties by means of the inverse KirkwoodBuff integrals method. δx1,3 values are negative in water-rich mixtures but positive in compositions from 0.32 in mole fraction of methanol to pure methanol. It is conjecturable that in the former case, the hydrophobic hydration around non-polar groups plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behavior of this cosolvent.  相似文献   

5.
The preferential solvation parameters of methocarbamol in dioxane + water, ethanol + water, methanol + water and propylene glycol + water mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals (IKBI) method. This drug is sensitive to solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and co-solvent-rich mixtures, but positive in mixtures with similar proportions of solvents, except in methanol + water mixtures, where positive values are found in all the methanol-rich mixtures. It is conjecturable that the hydrophobic hydration around the non-polar groups in water-rich mixtures plays a relevant role. Otherwise, in mixtures of similar solvent compositions, the drug is mainly solvated by co-solvent, probably due to the basic behaviour of the co-solvents; whereas, in co-solvent-rich mixtures, the preferential solvation by water could be due to the acidic behaviour of water. Nevertheless, the specific solute–solvent interactions present in the different binary systems remain unclear.  相似文献   

6.
The mole fraction solubility of phenacetin (PNC) in methanol + water binary solvent mixtures at 298.15 K was determined along with density of the saturated solutions. All these solubility values were correlated with the Jouyban–Acree model. Preferential solvation parameters of PNC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals (IKBI) method. δx1,3 values are negative in water-rich mixtures but positive in methanol mole fraction of >0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of PNC plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.  相似文献   

7.
The equilibrium solubility of benzocaine (BZC) in several {methanol (1) + water (2)} mixtures at 298.15 K was determined. Solubility values are expressed in mole fraction and molarity and were calculated with the Jouyban–Acree model. Preferential solvation parameters of BZC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals method. δx1,3 values are negative in water-rich mixtures (0.00 < x1 < 0.32) but positive in the other mixtures (0.32 < x1 < 1.00). To explain the preferential solvation by water in the former case, it is conjecturable that the hydrophobic hydration around non-polar groups of BZC plays a relevant role in the solvation. Moreover, the higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol regarding water.  相似文献   

8.
Preferential solvation parameters of etoricoxib in several aqueous cosolvent mixtures were calculated from solubilities and other thermodynamic properties by using the IKBI method. Cosolvents studied were as follows: 1,4-dioxane, N,N-dimethylacetamide, 1,4-butanediol, N,N-dimethylformamide, ethanol and dimethyl sulfoxide. Etoricoxib exhibits solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and cosolvent-rich mixtures but positive in mixtures with similar proportions of both solvents. It is conjecturable that the hydrophobic hydration in water-rich mixtures plays a relevant role in drug solvation. In mixtures of similar solvent proportions where etoricoxib is preferentially solvated by the cosolvents, the drug could be acting as Lewis acid with the more basic cosolvents. Finally, in cosolvent-rich mixtures the preferential solvation by water could be due to the more acidic behaviour of water. Nevertheless, the specific solute–solvent interactions in the different binary systems remain unclear because no relation between preferential solvation magnitude and cosolvent polarities has been observed.  相似文献   

9.
The preferential solvation parameters (δx1,3) of indomethacin (IMC) in 1,4-dioxane + water binary mixtures were derived from their thermodynamic properties by means of the inverse Kirkwood–Buff integrals method. δx1,3 is negative in water-rich and 1,4-dioxane-rich mixtures but positive in cosolvent compositions from 0.17 to 0.69 in mole fraction of 1,4-dioxane at 298.15 K. It is conjecturable that in water-rich mixtures, the hydrophobic hydration around the aromatic and methyl groups of the drug plays a relevant role in the solvation. The higher solvation by 1,4-dioxane in mixtures of similar cosolvent compositions could be mainly due to polarity effects. Finally, the preference of this drug for water in 1,4-dioxane-rich mixtures could be explained in terms of the higher acidic behavior of water molecules interacting with the hydrogen-acceptor groups present in IMC.  相似文献   

10.
The preferential solvation parameters, which represent differences between the local and bulk mole fractions of the solvents near to the solute, in solutions of some sulfonamides in propylene glycol + water binary mixtures are derived from their thermodynamic properties by means of the inverse Kirkwood?Buff integrals (IKBI) and the Quasi-Lattice Quasi-Chemical (QLQC) method. From solvent effect studies, it is found that sulfonamides are sensitive to solvation effects; the preferential solvation parameter, δx PG,S, is negative in water-rich mixtures but positive in compositions from 0.20 to 1.00 in mole fraction of propylene glycol according to IKBI method and positive in all co-solvent compositions if the QLQC method is considered. It is conjecturable that in water-rich mixtures, hydrophobic hydration around the aromatic ring and/or other non-polar groups plays a relevant role in the solvation. The greater solvation by propylene glycol mixtures of similar solvent compositions and in co-solvent-rich mixtures could be due mainly to polarity effects and acidic behavior of the sulfonamides, in contrast to the more basic solvent propylene glycol.  相似文献   

11.
The rate constants and activation parameters of the reactions of the carbocation resulting from 6-ethoxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline photolysis with methanol (k 1) and the methoxide ion (k 2) have been measured by flash photolysis in binary mixtures of methanol with inert solvents (nonpolar pentane and polar acetonitrile) in wide composition ranges. The changes in the activation parameters for k 1 at different solvent compositions show that the increase in the rate constant in the pentane mixtures is mainly deter-mined by the increase in the preexponential factor. The decrease in k 1 in the acetonitrile mixtures is deter-mined by the decrease in the methanol concentration and by the increase in the activation energy. The different roles of the methoxide ion in the reaction are demonstrated. They depend on the nature of the inert solvent in the mixture. The results of this study are considered in terms of methanol clustering in pentane and acetonitrile, the different solubilities of 6-ethoxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline in the components of the binary mixtures, and the difference in distribution and solvation between the carbocation and the methoxide ion in the mixtures.  相似文献   

12.
The preferential solvation parameters of phenobarbital in aqueous binary mixtures of 1,4-dioxane, t-butanol, n-propanol, ethanol, propylene glycol and glycerol were derived from solution thermodynamic properties by using the IKBI method. This drug is sensitive to preferential solvation effects in all these mixtures. The preferential solvation parameter by the cosolvent (δx1,3) is negative in almost all the water-rich mixtures but positive in mixtures with similar proportions of solvents and cosolvent-rich mixtures, except in 1-propanol + water mixtures, where negative values are also found in mixtures with x1 ≥ 0.70. Hydrophobic hydration around the non-polar ethyl and phenyl groups of this drug in water-rich mixtures could play a relevant role in drug solvation. Otherwise, in mixtures of similar solvent compositions and in cosolvent-rich mixtures the preferential solvation by cosolvent could be due to the acidic behaviour of the drug.  相似文献   

13.
Preferential solvation parameters of nifedipine (NIF) in ethanol (EtOH) + water and propylene glycol (PG) + water mixtures were obtained from their thermodynamic properties in solution using the inverse Kirkwood–Buff integrals. Preferential solvation parameter (δx1,3) by both co-solvents is negative in the water-rich mixtures but positive in almost all the other compositions at 293.2, 303.2 and 313.2 K. Nevertheless, in EtOH-rich mixtures the values of δx1,3 are also negative. It can be assumed that in water-rich mixtures the hydrophobic hydration around the non-polar groups of NIF plays a relevant role in the solvation. The higher drug solvation by co-solvent in mixtures of similar solvent proportions and in co-solvent-rich mixtures could be due mainly to polarity effects. Moreover, in these mixtures the drug could be acting as a Lewis acid with the co-solvents molecules. Finally, in EtOH-rich mixtures the drug could be acting as a Lewis base with water molecules.  相似文献   

14.
The solubility of lamotrigine (LTG), clonazepam (CZP) and diazepam (DZP) in some {cosolvent (1) + water (2)} mixtures expressed in mole fraction at 298.15 K was calculated from reported solubility values expressed in molarity by using the densities of the saturated solutions. Aqueous binary mixtures of ethanol, propylene glycol and N-methyl-2-pyrrolidone were considered. From mole fraction solubilities and some thermodynamic properties of the solvent mixtures, the preferential solvation of these drugs by both solvents in the mixtures was analysed by using the inverse Kirkwood–Buff integrals. It is observed that LTG, CZP and DZP are preferentially solvated by water in water-rich mixtures in all the three binary systems analysed. In {ethanol (1) + water (2)} mixtures, preferential solvation by water is also observed in ethanol-rich mixtures. Nevertheless, in {propylene glycol (1) + water (2)} and {N-methyl-2-pyrrolidone (1) + water (2)} mixtures preferential solvation by the cosolvent was observed in cosolvent-rich mixtures.  相似文献   

15.
The preferential solvation parameters by propylene glycol (PG) of the homologous series of the n-alkyl esters of p-hydroxybenzoic and p-aminobenzoic acids, namely, methyl, ethyl, propyl and butyl derivatives, were derived from their thermodynamic properties of solution by means of the inverse Kirkwood–Buff integrals (IKBI) method. The preferential solvation parameters by the cosolvent, δx1,3, are negative in water-rich mixtures, but positive in PG-rich mixtures, and the relative magnitudes of δx1,3 are proportional to the alkyl chain length despite of the solvent involved in the preferential solvation, i.e. PG or water. It is possible that the hydrophobic hydration around aromatic ring and/or methylene groups plays a relevant role in the drugs solvation in water-rich mixtures. The more solvation by PG in PG-rich mixtures could be due mainly to polarity effects and acidic behaviour of the hydroxyl or amine groups of the compounds in front to the more basic solvent present in the mixtures, i.e. PG.  相似文献   

16.
The equilibrium solubility and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K was reported. Mole fraction solubility varies continuously from 2.85 × 10–9 in neat water to 2.39 × 10–3 in neat 1,4-dioxane. Solubility behaviour was adequately correlated by means of the Jouyban-Acree model. Based on the inverse Kirkwood-Buff integrals, preferential solvation parameters were calculated. Triclocarban is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.18) and also in 1,4-dioxane-rich mixtures (0.78 < x1 < 1.00) but preferentially solvated by 1,4-dioxane in mixtures with similar solvent compositions.  相似文献   

17.
The equilibrium solubilities of the analgesic drug meloxicam (MEL) in propylene glycol + water mixtures were determined at several temperatures from 293.15 to 313.15 K. The Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data. The solubility was maximal in neat propylene glycol and very low in pure water at all temperatures studied. A nonlinear plot of Δsoln H° versus Δsoln G° gave a negative slope from pure water up to 0.80 mass fraction of propylene glycol and a positive slope above this composition up to neat propylene glycol, at the mean temperature 303.15 K. Accordingly, the driving mechanism for MEL solubility in the water-rich mixtures was the entropy, probably due to water-structure loss around nonpolar moieties of the drug, while for the propylene glycol-rich mixtures it was the enthalpy, probably due to better solvation of the drug. The preferential solvation of MEL by the components of the solvent was estimated by means of the inverse Kirkwood-Buff integral method, showing rather small preferential solvation of MEL by propylene glycol at all compositions.  相似文献   

18.
The preferential solvation parameters (δx1,3) of genistin in ethanol/acetone (1) + water (2) and daidzein in ethanol (1) + water (2) co-solvent mixtures at elevated temperatures were derived from available solubility data using the inverse Kirkwood–Buff integral method. The values of δx1,3 varied non-linearly with the co-solvent (1) proportion in all the aqueous mixtures. For the three co-solvent mixtures, the values of δx1,3 were negative in water-rich mixtures, which indicated that daidzein or genistin was preferentially solvated by water and can act as Lewis bases to establish hydrogen bonds with the proton-donor functional groups of water (1). The same behavior was also observed for daidzein in ethanol (1) + water (2) and acetone (1) + water (2) mixtures with co-solvent-rich composition. For daidzein in ethanol (1) + water (2) mixtures with composition 0.24 < x1 < 1, and genistin in ethanol (1) + water (2) and acetone (1) + water (2) mixtures with intermediate compositions, the local mole fractions of ethanol or acetone were higher than those of the mixtures and therefore the δx1,3 values were positive, which indicated that genistin and daidzein were preferentially solvated by the co-solvent. In these regions, daidzein and genistin were acting as a Lewis acid with ethanol or acetone molecules.  相似文献   

19.
 The Kirkwood-Buff integrals for 18 completely miscible aqueous co-solvent binary mixtures have been recalculated from thermodynamic data, and the volume-corrected preferential solvation parameters derived from them are presented. Also presented are these latter quantities for 15 additional such mixtures, for which the volume correction has not been applied previously. The self-interaction of the water, the mutual interaction of the water and the co-solvent, and the self-interaction of the co-solvent at infinite dilution derived from these integrals and parameters are then discussed. The systems studied include aqueous hydrogen peroxide, methanol, ethanol, 1- and 2-propanol, 2-methyl-2-propanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, ethane-1,2-diol, glycerol, 2-methoxyethanol (at 313 and 343 K), 2-ethoxyethanol, 2-butoxyethanol, 2-aminoethanol, N-methyl- and N,N-dimethyl-2-aminoethanol, tetrahydrofuran, 1,4-dioxane, acetone, formic, acetic, and propanoic acids, piperidine, pyridine, acetonitrile, formamide, N-methyl- and N,N-dimethylformamide, N-methylacetamide, N-methylpyrrolidin-2-one (at 303 K), hexamethyl phosphoric triamide, dimethylsulfoxide, and tetramethylenesulfone (at 303 K).  相似文献   

20.
Summary.  The Kirkwood-Buff integrals for 18 completely miscible aqueous co-solvent binary mixtures have been recalculated from thermodynamic data, and the volume-corrected preferential solvation parameters derived from them are presented. Also presented are these latter quantities for 15 additional such mixtures, for which the volume correction has not been applied previously. The self-interaction of the water, the mutual interaction of the water and the co-solvent, and the self-interaction of the co-solvent at infinite dilution derived from these integrals and parameters are then discussed. The systems studied include aqueous hydrogen peroxide, methanol, ethanol, 1- and 2-propanol, 2-methyl-2-propanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, ethane-1,2-diol, glycerol, 2-methoxyethanol (at 313 and 343 K), 2-ethoxyethanol, 2-butoxyethanol, 2-aminoethanol, N-methyl- and N,N-dimethyl-2-aminoethanol, tetrahydrofuran, 1,4-dioxane, acetone, formic, acetic, and propanoic acids, piperidine, pyridine, acetonitrile, formamide, N-methyl- and N,N-dimethylformamide, N-methylacetamide, N-methylpyrrolidin-2-one (at 303 K), hexamethyl phosphoric triamide, dimethylsulfoxide, and tetramethylenesulfone (at 303 K). Received January 10, 2001. Accepted (revised) February 20, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号