首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New cholesterol side-functionalised polycarbonate polymers were synthesised by the ring-opening homo- and copolymerisation reaction of the cyclic monomer cholesteryl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate and d,l-lactide using Sn(Oct)2 as a catalyst. The chemical structures and average molecular weights of the cyclic monomer, homopolymer and block copolymers obtained in this study were characterised using FT-IR, 1H NMR and gel permeation chromatographic measurement. The mesomorphism and mesophase structure were investigated with polarising optical microscopy, differential scanning calorimetry and X-ray diffraction measurement. As a result, the homopolymer and block copolymers showed an enantiotropic smectic A (SmA) phase. With the concentration of the lactide segment increasing, the glass transition temperature and isotropic temperature of the corresponding block copolymer all decreased. In addition, XRD suggested that the homopolymer and two block copolymers showed the SmA double-layer packing of side chains.  相似文献   

2.
Three series of 2-(4′-alkoxybiphenyl-4-yl)-1H-benzimidazole derivatives (nM-x), which possessed 5-nitrobenzimidazole (nM-N series), benzimidazole (nM-H series) or 5-methylbenzimidazole (nM-M series) units at the end of the molecule, were synthesised and characterised by infrared, 1H- and 13C-nuclear magnetic resonance spectra, electrospray ionisation-mass spectrometry and elemental analysis. Their phase transition behaviour was investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. All the compounds exhibited enantiotropic smectic mesophases with wide temperature domains for a carbon number in the alkoxy chain from 6 to 16, where the mesophase ranges were 14–91°C and 17–99°C during heating and cooling processes for the nM-N compounds, 7–25°C and 8–49°C for the nM-H compounds and 48–81°C and 52–85°C for the nM-M compounds, respectively. The effect of the length of alkoxy chain on mesomorphic properties was discussed. The nM-N and nM-M exhibited a much wider mesophase range whether during heating or cooling process than the corresponding nM-H series, especially for the longer terminal chain (n > 8), which indicated that the substituent in the benzimidazole moiety was helpful in increasing the mesophase stability.  相似文献   

3.
ABSTRACT

In order to study the influence of lateral Br substitution on mesophase behaviour, five homologous series of 4-substituted phenylazo phenyl 4?-(3?-bromo-4?-alkoxyphenylazo) benzoates (Ina–e) have been synthesised. Within each homologous series, the alkoxy group varies from 6 to 16 carbons, while other terminal group substituents, X, are CH3O, CH3, H, Br and NO2 groups; the mesophase behaviour of these series is compared with previously prepared laterally neat analogues, 4-substituted phenylazo phenyl 4?-(4?-alkoxyphenylazo) benzoates (IIna–e) and laterally methyl analogues, 4-substituted phenylazo phenyl 4?-(3?-methyl-4?-alkoxyphenylazo) benzoates (IIIna–e). Similar to lateral methyl analogues, the present series, lateral Br substitution showed that, independent of the polarity of the substituent X or the alkoxy-chain length, the nematic phase is predominant with relatively high stability and broad temperature ranges. The mesophase stability varies between 204.0°C and 335.0°C for the nematic phase and 169.6°C and 281.0°C for the SmA phase. Their total mesophase temperature ranges vary between 87.2°C and 201.4°C. All compounds were found to be thermally stable within the mesophase temperature range, except the lower homologue of the nitro and Br substituted derivatives. The obtained results are discussed in terms of molecular polarisability.  相似文献   

4.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

5.
A new side cholesterol-functionalised liquid crystal (LC) copolymer based on aliphatic polycarbonate backbone was synthesised. The chemical structures of the block copolymers obtained in this study were characterised with Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1H NMR) spectra. Their thermal stability and phase behaviours were investigated with thermogravimetric analysis (TGA) measurements, differential scanning calorimetry, and polarising optical microscopy. The molecular organisation in the mesophase was studied by temperature-dependent X-ray diffraction (XRD). As a result, the block copolymer bearing side cholesteryl groups showed a glass transition at 15.8°C and a smectic A (SmA) to isotropic phase transition at 151.3°C on heating cycle. XRD indicated that the block LC copolymer showed an interdigitated molecular arrangement of the mesogenic units within the smectic layers. This partial bilayer structure was similar to the SmA phase formed by polar mesogens.  相似文献   

6.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

7.
ABSTRACT

The effect of introducing a lateral methyl substitution into the previously investigated laterally neat four-ring analogues, 4-substituted phenylazo phenyl 4?-(4?-alkoxyphenylazo) benzoates (Ina–e), on their mesophase behaviour was investigated for the newly prepared five homologous series of 4-substituted phenylazo phenyl 4?-(3?-methyl-4?-alkoxyphenylazo) benzoates (IIna–e). Within each homologous series, the alkoxy group varies between 6, 8, 10, 12, 14, and 16 carbons, while the substituent, X, is a polar group that alternatively changes between the electron-donating (CH3O and CH3) groups, and the electron-withdrawing (Br and NO2) groups, including the unsubstituted homologues (IInc). Their mesophase stabilities were determined by DSC and phases identified by PLM. The results showed that independent of the alkoxy-chain length or the polarity of the substituent X, the nematic phase is predominant with relatively high stability and wide temperature ranges. All compounds show a good thermal stability in the mesophases domain, except the nitro and Br substituted derivatives bearing short alkoxy chain length. Comparison of the mesophase behaviour was also made between the present series and corresponding three-ring laterally CH3-substituted azo/ester analogues. UV-vis absorption spectra revealed that derivatives with electron donating or an electron withdrawing groups exhibited redshifts of the π→π* transition compared with unsubstituded derivative.  相似文献   

8.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

9.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

10.
ABSTRACT

To study the mesophase formation mechanism of polybenzoxazine, a novel linear benzoxazine oligomer bearing cholesteryl side groups [poly(PC-AC)] was designed and synthesised through thermally activated ring-opening polymerisation of a monofunctional benzoxazine monomer (PC-AC). The PC-AC was obtained by Mannich condensation reaction using mesomorphic amine of cholesteryl 4-aminobenzoate, p-cresol and paraformaldehyde as starting materials. During the isothermal polymerisation of PC-AC monomer, the phase evolution from a crystal phase to an isotropic molten phase and then to a liquid crystal (LC) phase was observed. Since it is PC-AC oligomers that form the LC phase, ‘polymerisation-induced LC’ mechanism is put forward. We believe that the structure factors including the confined formation of intramolecular hydrogen bonding and the side chain position of mesogenic units also play an important role in the formation of the LC phase. Furthermore, poly(PC-AC) exhibits a smectic mesophase. This work provides new insight into the LC phase formation mechanism of polybenzoxazines. This is very helpful to guide the rational design and synthesis of polymers with high thermal conductivity and high-temperature resistance.  相似文献   

11.
H.A. Ahmed  G.R. Saad 《Liquid crystals》2013,40(12):1765-1772
Four new groups of the di-fluoro-substituted 4-(2′-(or 3′)-fluoro phenylazo)-2-(or 3-) fluoro phenyl-4″-alkoxyphenylazo benzoates (InIVn) were prepared and investigated for their mesophase behaviour. An alkoxy group of variable chain length (n = 6, 10 and 14 carbons) is attached to the terminal phenylazo benzoate moiety, and two lateral fluoro substituents are attached individually with different orientations to the other two adjacent rings. The molecular structures of the prepared compounds were confirmed by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. The study aims to investigate the steric effect of the spatial orientation and relative positions of the two lateral fluorine atoms on the mesomorphic properties in their pure states. The mesophase behaviour was investigated via differential scanning calorimetry and mesophases were identified by polarised light microscopy. The investigation shows that these compounds exhibit high enantiotropic mesophases (SmC and N) and broad mesophase temperature range. The type and stability of the mesophase depends on the length of the terminal alkoxy chain and the position the two fluoro substituents. A comparison between these investigated compounds with their corresponding three-ring analogues was discussed.  相似文献   

12.
An approach to understand the effect of intermolecular actions on the nematic stability, a series of tolane compounds nH containing intermolecular π–π stacking, dipole–dipole and hydrogen bond interactions, are developed and investigated. Their mesophase behaviour were measured by differential scanning calorimetry (DSC) and polarising optical microscopy (POM), the results show that carboxylic acids nH exhibit high melting points and narrow nematic phase intervals, which are attributed to the too strong intermolecular actions. By disrupting the intermolecular hydrogen bond, their corresponding methyl esters nC have been designed and synthesised. It is interesting to note that these compounds exhibit broad nematic mesophase intervals and low melting points. The above results demonstrate that the interruption of intermolecular actions is an effective way to improve the nematic stability. In addition, the effects of the terminal alkyl chains and the terminal polar groups on the nematic stability were also discussed. Finally, DFT calculations of molecular conformation and dipole moment were conducted to better understanding of the molecular structure–mesomorphic property relationship.  相似文献   

13.
The room-temperature tensile mechanical properties and fracture topographies of polycarbonate are reported as a function of strain rate, sample preparation, and thermal history above and below Tg. The bulk physical structural changes produced by various thermal treatments were monitored by density, yield stress, and differential scanning calorimetry observations. Ordered regions do not form in bulk polycarbonate at or below 145°C. The changes produced in the mechanical properties of polycarbonate on annealing below Tg, relative to a quenched or 145°C equilibrium-state glass, are caused by liquidlike packing changes in free volume. In room-temperature tensile a 125°C–6 day annealed glass exhibits transitional behavior from shear free volume, such as quenched and 145°C equilibrium-state glasses, this transition occurs at higher strain rates. Polycarbonate embrittles as a result of the cessation of shear yielding and reversion to a crazing failure mode with a corresponding decrease in molecular flow and energy to failure. Density measurements indicate that ordered regions do start to grow immediately above 145°C in bulk polycarbonate. This phenomenon allows precrystalline and/or crystalline entities to grow below the bulk Tg in thin films and on the free surfaces of thick films where mobility restrictions are less severe than in the bulk. From bright-field transmission electron micrographs of thin films and carbon–platinum surface replicas of etched thick films it is suggested that the observed spherical precrystalline structures are aggregates of 50–60 Å ordered molecular do mains.  相似文献   

14.
The molecular orientation of an aromatic polycarbonate containing fluorene side chains was investigated by polarized infrared spectroscopy and birefringence analyses. The copolymers were synthesized from 2,2‐bis(4‐hydroxyphenyl)propane (BPA), 9,9‐bis(4‐hydroxy‐3‐methylpheny)fluorene (BMPF), and phosgene by interfacial polycondensation. The 1449‐cm?1 band of the uniaxially oriented films, stretched at the glass‐transition temperature (Tg) plus 5 °C, was assigned to various combinations of CC stretching and CH in‐plane bending vibrations in the fluorene ring, and the transition moment angle was estimated to be 90°. The intrinsic birefringence of aromatic polycarbonate films with BMPF molar ratios ranging from 0.5 to 1 was obtained with the 1449‐cm?1 band. The copolymer was estimated to show zero intrinsic birefringence at the BMPF molar ratio of 0.75, and the BMPF homopolymer showed negative intrinsic birefringence. A linear relationship between the volume fraction of BMPF units and the intrinsic birefringence indicated that the two monomer units of BPA and BMPF in each copolymer were not independent, and an intrinsic birefringence could be defined even in the copolymer. The sign of the photoelastic coefficient in the homopolymer with BMPF units was positive. The different signs of the photoelastic coefficient and the intrinsic birefringence suggest that the fluorene side‐chain orientation induced by stress in the glass state is quite different from the orientation of the uniaxially oriented films stretched at Tg + 5 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1554–1562, 2003  相似文献   

15.
Photoresponsive polymers have attracted increasing attention. Herein, we designed and synthesized a photoresponsive liquid crystal polymer (LCP). The LCP was prepared through the copolymerization of a styrylpyrene-containing photoresponsive monomer and a monomer containing mesogen 4-cyanophenyl benzoate. Gel permeation chromatography (GPC) curve and 1H nuclear magnetic resonance (1H NMR) spectrum confirmed that the LCP was successfully synthesized. Thermogravimetric analysis and differential scanning calorimetry curves showed that the LCP had high thermal stability, with a decomposition temperature at 5% weight loss of 305°C, and Tg and Ti of 46 and 128°C, respectively. Polarized optical microscopy studies suggested that thermal annealing promoted the orientation of the LCP films. Model compounds containing styrylpyrene units showed photo-controlled dimerization. Furthermore, the dimerization of the styrylpyrene units could control the crosslinking densities in the LCP, thereby regulating the network structures and properties. These properties demonstrate that the LCP is a promising photoresponsive material.  相似文献   

16.
《Liquid crystals》2012,39(12):1780-1789
ABSTRACT

In this study, aromatic–aliphatic thermotropic copolyesters derived from p-hydroxybenzoic acid, p-hydroxycinnamic acid (HCA), terephthalic acid and polyethylene glycol (PEG) with different molecular weight (200, 400, 600) were directly synthesised via Vilsmeier adduct solution polymerisation method. The structure, thermal behaviour, liquid crystal property, hydrophylicity and photoactivity were investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimeter, polarised optical microscopy, water contact angle measurement and ultraviolet (UV) spectrophotometer. The PEG incorporation ratio is 0.540–0.691 related to the HCA units, because of its low reactivity. And, the copolyesters have relatively low melting temperatures (96–107°C) and good hydrophylicity (water contact angle value 61.2–75.3°) as compared with wholly aromatic thermotropic copolyester. All of the copolyesters exhibited nematic liquid crystal behaviour and the stable mesophase temperature range was more than 60°C after being melted. The resulted copolyesters had enough thermal stability for melt processing without any degradation. The UV absorption intensities decreased with increased irradiation time, indicating that photocrosslinking occurred.  相似文献   

17.
New liquid crystalline monomer 4-(4-ethoxybenzoyloxy)biphenyl-4′-[(10-undecylen-1-yloxy)-4′-ethoxy]benzoate (M 1 ), chiral crosslinking agent isosorbide di-(10-undecylen-1-yloxybenzoate) (M 2 ), and the corresponding elastomers were prepared. The chemical structures of M 1 and M 2 were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. M 1 exhibited typical threaded texture and droplet texture of nematic phase. The use of chiral crosslinking agent in the polymer networks could induce cholesteric phase. The elastomers containing less than 10 mol% of the chiral crosslinking units showed elasticity, reversible phase transition, wide mesophase temperature ranges, and high thermal stability. For the elastomers P 2 P 4 , the glass transition temperature (T g) increased; clearing temperature (T i) and mesophase temperature range (ΔT) decreased with increasing content of the crosslinking unit.  相似文献   

18.
Cyanotolane or fluorotolane mesogens were for the first time introduced into the fumarate monomer under basic conditions. All fumarate monomers undergo radical polymerization in benzene in the presence of dimethyl 2,2′‐azobis(isobutyrate) as an initiator at 60 °C, affording the corresponding poly(fumarate)s with a molecular weight (Mn) of ~ 104 and an exceptionally narrow polydispersity. The phase behaviors of the fumarate monomers and the correspoding poly(fumarate)s were comprehensively investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction (XRD) analysis. For the fumarate monomers, fluorotolane derivatives were prone to form higher‐order liquid crystal phases such as a smectic phase, while cyanotolane derivatives tended to show a wide mesophase temperature range, depending on the alkyl chain spacer length. Very surprisingly, these features dramatically weakened when they were polymerized. The mesophase temperature ranges became narrow and completely disappeared for the poly(fumarate)s with a shorter alkyl chain spacer. A nematic phase representing lower‐order arrangements became a predominant liquid crystal phase for the poly(fumarate) carrying cyanotolane mesogens. Only the poly(fumarate) carrying fluorotolane mesogens with a longer alkyl chain spacer displayed the characteristic XRD patterns of the smectic B phase. The transient photocurrent measurements of the fumarate monomer with cyanotolane mesogens displayed a hole mobility of the order of 10?4–10?5 cm2 V?1 s?1 at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5101–5114, 2008  相似文献   

19.
Abstract

A novel liquid-crystalline polymer, the toluene-4-sulphonyl urethane of hydroxypropylcellulose (TSUHPC), was prepared through chemical modification of hydroxypropylcellulose (HPC) of Mw = 60000 g mol?1. The resulting polymer was characterized by infrared spectroscopy, differential scanning calorimetry (DSC) and polarizing microscopy. It was found that thermotropic liquid crystal phases are formed between about 60°C and 110°C. Concentrated solutions of TSUHPC in acetone and N,N-dimethylacetamide exhibit cholesteric behaviour, at room temperature. When approaching the lyotropic mesophase to solid transition, either by cooling or by solvent evaporation, very interesting arborescent structures of a seemingly fractal nature may be observed, depending on the kinetics of the transition. A banded texture can be observed when the polymer is sheared near the transition to the isotropic phase.  相似文献   

20.
Abstract

The synthesis and characterization of seven novel (R)-2-(4-substituted-phenoxy)propanonitriles are described. The propanonitriles were prepared to evaluate their potential use as thermochromics and ferroelectric dopants, as well as to determine their twist sense properties. The materials exhibit smectic and chiral nematic phases of high thermal stability; the mesogenic behaviour of the nitriles is directly related to the type of two-ring core unit employed. The effects of the different molecular geometries and polarizabilities of the liquid crystalline cores on mesophase stability are discussed, particularly in relation to other members of this series. The chiral nematic phase of the propanonitriles is assigned as having a left-handed twist sense from contact preparation studies, and this is in agreement with rules relating absolute configuration and molecular structure to helical twist sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号