首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丁航晨  施思齐  姜平  唐为华 《物理学报》2010,59(12):8789-8793
采用基于密度泛函理论的第一性原理计算,系统地研究了BiFeO3的7种不同空间群(R3c,R3m,P4mm,Cm,Pm3m,R3m和R3c)结构及其转变关系.结果表明,铁电相R3c结构是基态,不同结构之间也存在着一定的转变关系,其变化主要包括两种形式,在[111]方向上Bi3+相对FeO6八面体存在一定的位移和FeO6八面体绕[111]极化轴的反铁扭曲旋转.此外,还得出BiFeO3的薄膜结构受到衬底结构的作用会导致其从三方相(R3c)向四方相(P4mm)转变.  相似文献   

2.
The domain configurations and local piezoresponse property of the [720]‐cut BaTiO3 single crystal and [001]‐oriented BaTiO3 crystal were investigated by high‐resolution piezoresponse force microscopy. Large differences in their surface topography features, domain configurations and local piezoresponse were found between [720]‐cut and [001]‐oriented BaTiO3 crystals. The large surface bending angle due to ferroelastic domain walls leads to a high strain energy appearing in the [720]‐cut BaTiO3, further resulting in unique band‐like topographic features, needle domains for stress compensation and locally ultrahigh piezoelectric response as well. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Co掺杂BiFeO3的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张晖  刘拥军  潘丽华  张瑜 《物理学报》2009,58(10):7141-7146
采用密度泛函理论结合投影缀加波(PAW)方法,研究了具有钙钛矿结构的BiFeO3材料及对BiFeO3进行B位Co元素替代掺杂得到的BiFe075Co025O3材料的磁结构、电子结构、能带结构.结果表明:Co的掺入不破坏原有的钙钛矿结构,对材料铁电性影响不大;掺杂导致原有的G型反铁磁序发生变化,形成了亚铁磁序的磁结构,材料的铁磁性有了很大提高;然而,Co杂质的掺入使材料的绝缘性有所减弱. 关键词: 第一性原理计算 3')" href="#">Co掺杂BiFeO3 铁磁性  相似文献   

4.
La and Co co-doped BiFeO3 ((Bi1−xLax)(Fe0.95Co0.05)O3 (x=0, 0.10, 0.20, 0.30)) ceramics were prepared by tartaric acid modified sol–gel method. The X-ray diffraction patterns indicate a transition from rhombohedral structure to tetragonal structure at x=0.20, which has been confirmed by the Raman measurements. The band gap increases with increasing x to 0.20, and then decreases with further increasing x to 0.30. The structural transition has significant effects on the multiferroic properties. The remnant magnetization and saturate ferromagnetic magnetization decrease abruptly with increasing x to 0.10, and then gradually increase with further increasing x up to 0.30. The coercivity is significantly reduced with increasing La doping concentration. The ferroelectricity has been improved by La doping, and the polarization increases with increasing x to 0.10, then decreases with further increasing x up to 0.30. The simultaneous coexistence of soft ferromagnetism and ferroelectricity at room temperature in tetragonal Bi0.70La0.30Fe0.95Co0.05O3 indicates the potential multiferroic applications.  相似文献   

5.
A narrow part of Fe2O3–Bi2O3 phase diagram was re-investigated in order to elaborate single crystals of the multiferroic BiFeO3 (BFO). Centimeter-size single crystals were successfully obtained by flux method, and present a preferred growth direction. X-ray diffraction studied have highlighted that the growth direction is along the polar axis [111] r of the structure. The stability of BFO versus temperature (reversible ferroelectric transition followed by multiple irreversible decompositions) is discussed in the light of Differential Scanning Calorimetry (DSC) analysis performed between 25 and 1400°C.  相似文献   

6.
The phase transition of BiFeO3 (BFO) from tetragonal to monoclinic induced by pressure was investigated by first-principles method. The sequential monoclinic phase, MaMa, which is favorable during low compression with respect to the tetragonal phase, was characterized. The order parameters were calculated in the vicinity of the phase transition, showing that phase transition has a second-order character. The results demonstrated that the pressure-induced tetragonal-to-monoclinic phase transition in BFO is related to the softening behavior of the E mode, which are very helpful in further investigations of the morphotropic phase boundary (MPB) in lead-free materials.  相似文献   

7.
Raman scattering from one-magnon excitation has been observed for the first time in epitaxial BiFeO3 thin films grown on (1 1 1) SrTiO3 substrates. The intensities and the frequency of the magnon mode at 18.9 cm−1 (M1) showed a discrepancy at the characteristic temperatures of ∼140 and 200 K and the magnon mode at 27.9 cm−1 (M2) disappeared at ∼200 K suggesting spin-reorientation (SR) transition in the epitaxial BFO film. The dc susceptibility measurement showed a large discrepancy near these two temperatures evidently elucidating the spin-reorientation transition mechanism. The partial spectral weight of the magnon modes is believed to be transferred to the lowest phonon mode appearing at 72.8 cm−1 and higher magnon mode M2 disappearing near 200 K reveal magnon-phonon coupling near to SR transition.  相似文献   

8.
In this paper we report the leakage current,ferroelectric and piezoelectric properties of the YFe O3film with hexagonal structure,which was fabricated on Si(111)substrate by a simple sol-gel method.The leakage current test shows good characteristics as the leakage current density is 5.4×10-6A/cm2under 5 V.The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region.The P–E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature.The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy,which testifies to the ferroelectricity of the YFe O3film further.  相似文献   

9.
A study of the influence of cationic Na+ substitution in the archetype KMnF3 perovskite crystal was performed using the Raman method. The Raman spectra of mixed K1-xNaxMnF3 crystals with x = 0.029, 0.048 and 0.065 were recorded versus temperature and fully interpreted in terms of a “one mode” behaviour. In addition to the soft mode not completely vanishing close to Tc, attention was especially paid to evidence of static and dynamical disorder. From this point of view the behaviour of the hard Raman modes versus temperature has been studied together with two unexpected Raman bands in the cubic phase. The interpretation has been made within the more general framework of structural disorder existing in such perovskites with anisotropic interactions.  相似文献   

10.
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol–gel method was investigated. These BFO samples were implanted by 15.8?MeV ions of Au5+ at various ion fluence ranging from 1?×?1014 to 5?×?1015?ions/cm2. Effect of Au5+ ions’ implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds’ formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8?MeV Au5+ ions at a fluence of 5?×?1015?ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8?MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.  相似文献   

11.
Raman scattering has been used to study the influence of cobalt, an effective dopant to obtain SrTiO3 magnetic oxide, on the lattice dynamics of SrTiO3. It is found that Co doping increases the lattice defects and induces a Raman vibration mode of 690 cm−1. On the other hand, the ferromagnetism dependence on the x and annealing temperature was clearly and coherently observed in SrTi1−xCoxO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles. It is found that the ferromagnetism of SrTi1−xCoxO3 nanoparticles is weakly related to crystal deformation and oxygen vacancies in SrTiO3. So, F-center model can explain the origin of the ferromagnetism in the prepared Co-doped SrTiO3 samples. At the same time, the finding of large room-temperature ferromagnetism (1.6 emu/g) in this system would stimulate further interest in the area of more complicated ternary oxides.  相似文献   

12.
This work reports the temperature‐dependent Raman scattering study of mutiferroic BiFeO3 (BFO) bulk ceramics in a wide temperature range of 93–843 K. The polycrystalline samples are sintered at four different temperatures and characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), vibrating sample magnetometry, differential scanning calorimetry (DSC), and optical microscopy. The microstructure shows remarkable changes in terms of grain size and domain pattern as the sintering temperature increases. The DSC curves show prominent exothermic peaks at 645 K, the antiferromagnetic–paramagnetic phase transition temperature. The Raman spectra of all the four specimens reveal strong anomalies in the vicinity of the Neel temperature, which can be attributed to the multiferroic nature of BFO. The Raman scattering studies also reveal considerable spectral changes at a temperature range of 140–200 K in all the specimens, which can be inferred to a further spin–reorientation transition exhibited in BFO at a cryogenic temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The effect of magnetic annealing treatment on the magnetization of multiferroic BiFeO3 was studied systematically. A series of pelletized nano-sized BiFeO3 powders were annealed at high temperature under different magnetic fields. Typical ferromagnetic hysteresis loops were obtained at room temperature of the ceramics which were derived from ferromagnetic BiFeO3 precursors. On the other hand, antiferromagnetic behaviors were observed in other samples synthesized from nonmagnetic precursors. The enhanced magnetic properties were ascribed to the magnetic anisotropy which was induced by the strong magnetic fields. This work indicates that the strong magnetic annealing method is an alternative approach to tuning the magnetic properties of high performance multiferroic materials with canted antiferromagnetic ordering.  相似文献   

14.
Single-phase multiferroic BiFeO3 (BFO) powders were prepared by hydrothermal microwave synthesis and dense BiFeO3 ceramics were fabricated for the first time by the low-temperature high-pressure (LTHP) sintering technique. Effect of sintering temperature ranging from 400 to 800 °C (3 min and 10 min) and pressure of 3–8 GPa on structural, microstructural, electric and magnetic properties were investigated through X-ray diffraction, scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density and magnetic measurements. The results highlighted that LTHP sintering method, thanks to the high pressure involved, requires lower temperature and shorter time than other techniques, avoiding BiFeO3 phase degradation. SEM images show that for short experimental time (t = 3 min) the average grain size of the sintered samples was approximately the same size of raw powder. Extending the sintering time up to 10 min the grain growth phenomena occurred. Moreover the results indicate that the best obtained density value was around 98% of theoretical density. The dielectric behavior of BiFeO3 ceramics was not significantly influenced by the LTHP sintering conditions. Magnetic measurements showed that ceramic BiFeO3 is weakly ferromagnetic at room temperature.  相似文献   

15.
In situ X-ray diffraction and Raman scattering experiments using a diamond anvil cell revealed that Im-3-type KSbO3 remains stable up to 40.5?GPa with a bulk modulus K0?=?101.6 (7)?GPa. Rietveld structure refinements and mode Grüneisen parameters suggested that the stability mechanism of this three-dimensional cubic tunnel structure was attributed to the isotropic compression for all types of Sb–O bonding in the unit of SbO6 octahedron. Isotropic structure adjustment with external pressure reflected the nature that Im-3-type KSbO3 model structure has a high ionic tolerance with a change in the chemical pressure in the isomorphous substitutions.  相似文献   

16.
Effects of BiFeO3 (BFO) content on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ) ceramics prepared by normal sintering in air were investigated. A stable solid solution is formed between BCTZ and BFO. The grain size gradually becomes smaller, and the ceramics become denser with increasing the BFO content. The Curie temperature, dielectric constant, and dielectric loss of BCTZ ceramics decrease simultaneously with the introduction of BFO. Moreover, the remanent polarization reaches a maximum at x = 0.2 mol%, and the coercive field continuously increases with increasing the BFO content due to the introduction of BFO with a higher coercive field. Improved piezoelectric properties (d33 ∼ 405 pC/N and kp ∼ 0.44) are demonstrated for the BCTZ ceramic with x = 0.2 mol%.  相似文献   

17.
H+-containing lanthanide-doped perovskites A(Ba, Sr etc.)B(Zr, Ce, Ti etc.)O3 are potential ceramic membranes for fuel cell and medium temperature water electrolysis (300–800 °C). The comparison studies of the hydrated and non-hydrated Yb-doped BaZrO3 and SrZrO3 were performed by thermal expansion, medium–high temperature neutron and room-temperature high-pressure Raman scattering. Neutron diffraction and elastic/quasi-elastic studies carried out for BaZrO3 ceramic show the presence of the protons, their successive diffusion above ∼600 °C, and then their departure above 750 °C (under vacuum). Phase transitions and their modification by proton insertion are discussed. A high-pressure Raman study of SrZrO3 performed at room temperature in the diamond anvil cell reveals the presence of two pressure-induced phase transitions at about 5 and 22 GPa and confirms that proton insertion modifies the phase transition sequences. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

18.
李强  黄多辉  曹启龙  王藩侯 《中国物理 B》2013,22(3):37101-037101
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.  相似文献   

19.
BiFeO3 (BFO) ceramics of different grain size have been synthesized by spark plasma sintering of sol-gel derived nanoparticles. It was found that with decreasing grain size there occurs an enhancement in magnetization and a simultaneous suppression in current leakage. According to systematic materials characterization, the enhanced magnetization is attributed to the enriched grain boundaries where the missing structural order perturbs the spin helix structure of BFO and thus generates uncompensated spins, while the reduced current leakage is ascribed to fewer conduction paths provided by the compacted grain structure.  相似文献   

20.
梁桁楠  马春丽  杜菲  崔啟良  邹广田 《中国物理 B》2013,22(1):16103-016103
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO 4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B 0 = 197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号