首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trifloxystrobin and tebuconazole are used for control of Sigatoka leaf spot disease of banana. This study was conducted to evaluate residue persistence of the fungicides in/on banana fruit, other edible parts and soil after spray application of the combination formulation, Nativo 75 WG, at the standard dose, 87.5 + 175 and double dose, 175 + 350 g a.i. ha?1. The fungicides were extracted from banana and soil with acetone, partitioned into dichloromethane and cleaned-up using activated charcoal for trifloxystrobin and primary/secondary amine (PSA) for tebuconazole samples. The limit of quantification of the method was 0.05 mg kg?1 for both fungicides. Initial residues of trifloxystrobin were 0.444 and 0.552 mg kg?1 in/on banana with peel (whole fruit), which reached <0.05 and 0.065 mg kg?1 after 30 days from treatment at the standard and double doses, respectively. Tebuconazole residues were 0.636 and 960 mg kg?1 initially and reduced to 0.066 and 0.101 mg kg?1 after 30 days. Trifloxystrobin and tebuconazole degraded with the half-life of about 11 days. Trifloxystrobin or its metabolite was not detected in the fruit pulp. Tebuconazole being systemic in nature moved to the fruit pulp which was highest on the 3rd day (0.103 and 0.147 mg kg?1) and remained for 15 days. Matured banana fruit, flower, pseudostem and field soil were free from fungicide residues. For consumption of raw banana 43 days pre-harvest interval (PHI) is required after treatment of the combination formulation. Therefore application of the fungicides towards maturity stage of the fruits may be avoided.  相似文献   

2.
Persistence and dissipation of fluopicolide and propamocarb were studied on cabbage and soil as per good agricultural practices over a period of 2 years. A modified QuEChERS analytical method in conjunction with gas chromatography (GC) and GC–mass spectrometry was used for analysis of fluopicolide and its metabolite, 2,6-dichlorobenzamide, and propamocarb in cabbage and soil. The results of the method validation were satisfactory with recoveries within 74.5–100.81% and relative standard deviations 4.8–13.9% (n = 6). The limit of detection (LOD) and limit of quantification (LOQ) of both fluopicolide and 2,6-dichlorobenzamide were 0.003 µg mL?1 and 0.01 mg kg?1, respectively. The LOD and LOQ of propamocarb were 0.03 µg mL?1 and 0.1 mg kg?1, respectively. During 2013, the initial residue deposits of fluopicolide on cabbage were 0.60 and 1.48 mg kg?1 from treatments at the standard and double doses of 100 and 200 g a.i. ha?1 which dissipated with the half-life of 3.4 and 3.7 days. During 2014, the residues were 0.49 and 1.13 mg kg?1 which dissipated with the half-life of 4.2 and 5.1 days. Propamocarb residues on cabbage were 5.36 and 12.58 mg kg?1 in the first study (2013) and 4.85 and 10.26 mg kg?1 in the second study (2014) from treatments at the standard and double doses of 1000 and 2000 g a.i. ha?1, respectively. The residues dissipated with the half-life of 4–5.5 days. The preharvest interval, the time required for fluopicolide + propamocarb residues to dissipate below the maximum residue limits (notified by EU) at the standard dose, was 11.8 and 14 days during 2013 and 2014. Residue of 2,6-dichlorobenzamide was always <LOQ in cabbage. Residues of fluopicolide, 2,6-dichlorobenzamide and propamocarb were <LOQ in field soil at harvest.  相似文献   

3.
A Quick, Easy, Cheap, Effective, Rugged and Safe method for determination of thiophanate-methyl, carbendazim, metalaxyl, fluazifop-P-butyl, chlorpyrifos and lambda-cyhalothrin in five brassica vegetables by high performance liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-electron capture detector has been developed. The average recoveries of six pesticides in five brassica vegetables were in the range of 77.4%–117.4% with relative standard deviation of 3.7–10.8%. Residues of thiophanate-methyl, carbendazim, metalaxyl, fluazifop-P-butyl, chlorpyrifos and lambda-cyhalothrin in five brassica vegetables were studied with the developed method for the classification of crop group and selection of representative commodity of five brassica vegetables. Totally 48 open field trials on five brassica vegetables were conducted at two locations in two different seasons. The residue dynamics and final residues of the six pesticides at three preharvest intervals in different vegetables were compared. All six pesticides had the longest half-lives in cabbage (2.1–3.5 days). Residues of carbendazim (sum of thiophanate-methyl and carbendazim), metalaxyl, chlorpyrifos and lambda-cyhalothrin had similar trend in different brassica vegetables. The maximal concentrations of these pesticide residues were found in kale (0.28–10.9 mg kg?1). Fluazifop-P-butyl residues were at low levels in all five brassica vegetables (<0.01–0.03 mg kg?1). Cabbage, red cabbage, Brussels sprouts and kohlrabi had no significant difference in all six pesticide residues and could be classified in a subgroup of Head Brassicas. Cabbage should be selected as the representative commodity. Considering the highest residues in kale and its different morphology, kale should not be classified into the subgroup of Head Brassicas.  相似文献   

4.
Study on the residue dynamics of chlorpyrifos and cypermethrin in/on pomegranate (Punica granatum L.) and soil was carried out by conducting supervised field trials as per good agricultural practices. A modified QuEChERS was used to extract the insecticides in pomegranate peel and aril and soil. The limit of quantification (LOQ) of chlorpyrifos and cypermethrin were 0.01 and 0.05 mg kg?1, respectively. Residues of the insecticides remained on the fruit surface and movement to the edible part (aril) was not observed. The residues after treatment on fruit peel were 2.46 and 3.51 mg kg?1 and 2.84 and 4.54 mg kg?1 for chlorpyrifos and cypermethrin, respectively, from recommended and double dose treatments. Chlorpyrifos residues degraded faster compared to cypermethrin. The pre-harvest intervals (PHIs) of chlorpyrifos were 22 and 35 days and those of cypermethrin 50 and 73 days, respectively, at recommended and double dose treatments. In the experimental field soil after the second application chlorpyrifos residues were 0.21 and 0.46 mg kg?1 and cypermethrin residues 0.15 and 0.36 mg kg?1. At harvest, both pesticides showed residues below the LOQ. Based on this study, application of cypermethrin towards harvest may be avoided whereas chlorpyrifos can be applied with 22 days PHI.  相似文献   

5.
A field experiment was conducted to evaluate clofentezine residue levels and dissipation trend in tangerine and soil for the safe application of clofentezine. A modified QuEChERS-HPLC-UVD method was developed to analyse clofentezine in tangerine and soil. Tangerine samples were homogenised and extracted by acetonitrile and then cleaned up with dispersive solid phase extraction (dSPE) by primary and secondary amine (PSA) and C18. Clofentezine residue was determined by high-performance liquid chromatography (HPLC) with a UV detector (UVD) at the wavelength of 268 nm. The presented method achieved the good linear relationship within the range from 0.05 to 5.0 mg kg?1 for clofentezine (R2 > 0.998). At the fortification levels of 0.05, 0.50 and 1.00 mg kg?1 in tangerine pulp, tangerine peel and soil, recoveries ranged from 75.9% to 117.7% with relative standard deviations (RSD) less than 8.2%. In the supervised field trials, the half-lives of clofentezine in tangerine and soil were approximately 11.3 and 8.6 days, respectively. At pre-harvest interval of 21 days, the residue of clofentezine in tangerine was below the maximum residue limits (MRL) (0.5 mg kg?1). Clofentezine (Water Dispersible Granule, 80%) was recommended to be sprayed twice and the recommended dosage ranged from 250 to 375 mg kg?1.  相似文献   

6.
Residue levels of azoxystrobin and chlorothalonil were determined in peppers grown in an experimental greenhouse. These two pesticides were selected on the basis of previous excesses of 26 and 24%, respectively, found in peppers samples cultivated in 2008 in eastern Morocco. The measurements were made over a 7 week period in which up to three successive treatments with azoxystrobin and a 4 week period in which up to three successive treatments with chlorothalonil were carried out. In all cases, plants were sprayed separately with azoxystrobin and chlorothalonil with application rates of active ingredients of 50 and 200?cc?hl?1, respectively. Sampling was carried out at 0, 2, 4, 7, 12, 15 and 22 days for azoxystrobin and 0, 1, 3, 7, 8 and 10 days for chlorothalonil. Residue levels of azoxystrobin and chlorothalonil were determined by liquid–liquid extraction (LLE) and gas chromatography with electron-capture detector (GC-ECD). During the study, residue levels in the plantation ranged between 1.14 and 0.02?mg?kg?1 for azoxystrobin and between 0.55 and 0.04?mg?kg?1 for chlorothalonil. The application of an intensive washing process to the pepper samples did not lead to a significant reduction in the residue levels of either pesticide. Likewise, significant differences were not found between the residue levels in the ‘edible’ and ‘inedible’ parts of the peppers.  相似文献   

7.
The dissipation dynamics and final residues of flutriafol on tobacco plant and soil were studied under field conditions. The residues of flutriafol in soil, green tobacco leaves and cured tobacco leaves were extracted by ultrasound-assisted extraction, cleaned up by dispersive solid-phase extraction and detected by liquid chromatography with tandem mass spectrometry. The limits of detection of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.006, 0.033 and 0.033 mg·kg?1, respectively. The limits of quantification of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.02, 0.1 and 0.1 mg·kg?1, respectively. Recoveries were 72.9–102% with relative standard deviations of less than 12% in soil and tobacco matrix. For field experiments, the half-lives of flutriafol in soil and green tobacco leaves were 9.2–11.5 and 9.5–11.1 days, respectively. At harvest, the final residue levels of flutriafol in cured tobacco leaves collected 21 days after one application at the recommended dosage were below 2.0 mg/kg. The maximum residue limit maximum residue limit (MRL) for flutriafol in tobacco has not yet been established in any countries. The data could help the Chinese Government to establish the MRL of flutriafol in tobacco and provide guidance on the proper use of flutriafol.  相似文献   

8.
Pesticides are widely used in rice cultivation, often resulting in detection of their residues in rice grains. So far, no analytical method has been available for the simultaneous determination of most rice pesticides in rice grains. This paper reports the development and validation of such a method for the determination of eight rice pesticides (penoxsulam tricyclazole, propanil, azoxystrobin, molinate, profoxydim, cyhalofop-butyl, deltamethrin) and 3,4-dichloroaniline, the main metabolite of propanil. Pesticide extraction and clean-up was performed by an optimized matrix solid-phase dispersion (MSPD) protocol on neutral alumina (5 g) using acetonitrile as the elution solvent. Samples were analyzed in a high-performance liquid chromatography–diode array detection (HPLC-DAD) system. Pesticide separation was achieved with a mobile phase of acetonitrile/water in a linear elution gradient from 30:70% (v/v) to 100:0% (v/v) in 14 min at a flow rate of 0.8 mL min?1. Method validation was performed by means of linearity, intra-day accuracy, inter-day precision and sensitivity. Linear regression coefficients (R 2) were always above 0.9948. Limits of detection (LOD) and quantification (LOQ) varied from 0.002 to 0.200 mg kg?1 and 0.006 to 0.600 mg kg?1, respectively. Recoveries were investigated at three fortification levels and were found to be acceptable (74–127%) with relative standard deviations (RSD) below 12%. Application of the method for the analysis of five commercial rice grain samples showed that the pesticide levels were below the LOD. Overall, the method developed is suitable for the determination of residues of most rice pesticides in rice grains at levels below the established MRLs.  相似文献   

9.
In this study, an efficient screening method based on a modified quick, easy, cheap, effective, rugged, and safe extraction method combined with ultra-high-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry was established for the determination of 90 pesticides residues in Panax Ginseng. The accuracy of the method was then verified by analyzing the false positive rate and the screening detection limit in Ginseng. The results revealed that the screening detection limit of 33 of 90 pesticide residues were 0.01 mg·kg−1, 22 species were 0.05 mg·kg−1, 11 species were 0.10 mg·kg−1, 8 species were 0.20 mg·kg−1, and another 16 species were greater than 0.20 mg·kg−1. A total of 73 pesticides were ultimately suitable to be practically applied for rapid analysis of pesticide residues in Ginseng. Finally, the established method was used to analyze the pesticide residues in 35 Ginseng samples available on the market. And the residual of dimethomorph, azoxystrobin, tebuconazole, and pyraclostrobin was relatively severe in Ginseng samples. This work expanded the range of pesticides detected and provided a rapid, effective method for pesticides screening in Ginseng.  相似文献   

10.
A simple extraction and cleanup procedure has been developed for the analysis of 24 organophosphorus (OP), organochlorine (OC) and pyrethroid (PY) pesticides in mineral and peat soils using modified QuEChERS method. The pesticides were extracted from the soil with acidified acetonitrile. The water was removed from the extract by salting out with sodium chloride and addition of magnesium sulfate. For OP pesticides, the extracts were cleaned up with 0.2 g of primary secondary amine packed in glass Pasteur pipette and determined by gas chromatography with flame photometric detector. For OC and PY pesticides, the extracts were cleaned up with 0.2 g of silica gel packed in a glass Pasteur pipette and determined by gas chromatography with electron capture detector. After the cleanup, the extracts had lower colour intensity and reduced matrix interferences. The recovery of the OP and OC pesticides for mineral and peat soils determined at 0.01–1.0 mg kg?1 fortification levels ranged from 79.0–120.0% and 82.2–117.6%, respectively. The detection limits for OP and OC pesticides were 0.001–0.01 and 0.002–0.005 mg kg?1, respectively. The recovery of the PY pesticides ranged from 87.5–111.7% at the detection limits of 0.002–0.010 mg kg?1. The relative standard deviations for all pesticides studied were below 10.8%. The modified method was simple, fast, and had utilized less reagents than the conventional methods. The method was applied to the determination of the pesticide residues in mineral and peat soil samples collected from the vegetable farms.  相似文献   

11.
This paper presents a cost-effective and validated multi residue confirmatory method for the determination of 167 chemically different pesticides and a survey study on Cyprus honey samples. This method uses ethyl acetate for the extraction of pesticides from honey and the determination is performed with liquid chromatography (LC) coupled to mass spectrometry (MS) operating in tandem mode (MS/MS) and with GC–ECD (gas chromatography with electron capture detector) analysis. The LC-MS/MS analytical system is especially important in the analysis of polar and non-volatile pesticides. For the validation of the method, blank honey samples were spiked with 146 pesticides (organophosphorous, carbamates, triazoles, amides, neonicodinoids, strobilurines, phenylureas, bendimidazoles and others) for the LC-MS/MS analysis at three levels: 0.01, 0.05 and 0.1 mg kg?1 and with 21 pesticides for the GC-ECD analysis at two levels: 0.01 and 0.05 mg kg?1for organochlorines and 0.05 and 0.2 mg kg?1for the pyrethroids. As blank sample, a sample of honey which did not contain detectable levels of the analytes sought was used. The validation study was in accordance to the DG SANCO guidelines. The scope of validation included recovery, linearity, limits of quantification and precision. Linearity is demonstrated all along the range of concentration that was investigated with correlation coefficients ≥0.98. Recoveries of the majority of compounds were in the 70%–120% range and were characterised by precision lower or equal to 20%. The validated method was used for a survey of 36 samples of honey produced in different areas of Cyprus and this is the first work on Cypriot honey samples investigating a broad range of pesticides. Only coumaphos was detected at concentrations higher than 0.01 mg kg?1 in the 58.6% of the honey samples analysed for Coumaphos. The results were evaluated in accordance to the provisions of the Commission Regulation (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits (MRLs) in foodstuffs of animal origin. The concentrations of coumaphos in all positive samples were at levels much lower than the MRL.  相似文献   

12.
The combinational fungicide suspension (11.7% propiconazole + 7% azoxystrobin), developed by Syngenta Co., Ltd., is very effective for the control of Alternaria black spot on ginseng. A simple and effective method was developed for determining propiconazole and azoxystrobin residues by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The recoveries of propiconazole ranged from 81.0% to 98.0% with relative standard deviations (RSDs) of 1.23–8.46%, while the recoveries of azoxystrobin ranged from 83.2% to 98.8% with RSDs of 3.29–9.50%. For the dissipation kinetics, the combinational fungicide was sprayed with dosage of 225 g a.i.ha?1 (1.5 times of recommended dosage) in ginseng and soil at two different locations. The dissipation kinetics followed the first-order kinetics with half-lives of 6.66–13.33 days for propiconazole and 4.92–9.12 days for azoxystrobin. Based on the terminal residues data, the preharvest interval (PHI) could be 35 days at recommended dosage in ginseng. The dietary exposure risk was estimated by risk quotient (RQ). The result showed that the RQ value was obviously lower than RQ = 1, indicating that spraying propiconazole and azoxystrobin in ginseng at recommended dosage was safe for human beings.  相似文献   

13.
A facile and sensitive method utilizing capillary gas chromatography with nitrogen phosphorus detection (GC–NPD) has been developed and validated for simultaneous analysis of hexaconazole, myclobutanil, and tebuconazole, three broad-spectrum systemic fungicides, in apples and soil. Two samples were fortified with the three pesticides and subjected to ultrasonic extraction, followed by solid-phase extraction (SPE) to remove coextractives, before analysis by GC–NPD. SPE procedures were performed on PSA cartridges (500 mg, 3 mL), the analytes being eluted with n-hexane–acetone (9:1 v/v, 2 mL). Recovery of three pesticides from the fortified apple and soil samples ranged from 94.5 to 107.3% with relative standard deviations less than 9.7% at the three spike levels (0.01, 0.1, and 0.5 mg kg?1). Limits of quantification of the method for apple and soil were 0.01 mg kg?1, sufficiently below the maximum residue limits. Direct confirmation of the analytes in samples was achieved by gas chromatography–mass spectrometry (GC–MS).  相似文献   

14.
A study of the biodegradation of imidacloprid in soil was carried out under laboratory conditions. Sandy soil samples were fortified with imidacloprid at 50, 100 and 150 mg kg?1 along with 45 x 107 colony forming units (cfus) of Bacillus aerophilus and the samples were compared with unamended soil. The samples were extracted with acetonitrile, cleaned up by treatment with primary secondary amine sorbent and graphitised carbon black. The residues of imidacloprid and its metabolites were analysed by high performance liquid chromatography. The parent compound, imidacloprid, was found to be more persistent in both the treatments. Among metabolites, the highest values were obtained for urea and olefin while 5-hydroxy, 6-chloronicotinic acid (6-CNA), nitrosimine and nitroguanidine (NTG) were also observed in all the treatments in amended soil. In case of unamended (control) soil, 6-CNA was found to be the most persistent metabolite followed by olefin, urea, 5-hydroxy, nitrosimine and NTG metabolites. Total imidacloprid residues for control soil samples followed first-order kinetics at 50 and 150 mg kg?1 but in case of control imidacloprid fortified at 100 mg kg?1, the total residues of imidacloprid and its metabolites followed pseudo-first-order kinetics. The respective half-life value for 50 mg kg?1 was 25.08 days and 30.10 days for both 100 and 150 mg kg?1. However, total imidacloprid residues followed pseudo-first-order kinetics for its applications at 50, 100 and 150 mg kg?1 in sandy loam soil amended with B. aerophilus. The half-life values for 50, 100 and 150 mg kg?1 were worked out to be 14.33, 15.05 and 18.81 days, respectively. With the use of B. aerophilus, the reduction percentage of initial applied dose imidacloprid in sandy loam soil was found to be higher in all the three doses as compared to that of the control samples.  相似文献   

15.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method for the analysis of triallate residue in wheat and soil was developed and validated. Multi-walled carbon nanotubes were used as clean-up sorbent. The residual levels and dissipation rates of triallate in wheat and soil were determined by liquid chromatography–tandem mass spectrometry. The limit of quantification was established as 0.01, 0.02 and 0.05 mg kg?1 for soil, wheat and wheat plant samples, respectively. The average recoveries of triallate ranged from 77% to 108% at fortified levels of 0.01–0.5 mg kg?1 with relative standard deviations of 3.0–8.4% (n = 5). From residue trials at three geographical experimental plots in China, the results showed that the half-lives of triallate in soils were 1.13–1.63 days. For trials applied according to the label recommendation, the final residues of triallate in wheat at harvest time were all below 0.05 mg kg?1 (the maximum residue levels of China, Japan, Korea and the US).  相似文献   

16.
A method was established for the simultaneous determination of 116 pesticide residues in Notoginseng Radix et Rhizome with a combination of the modified QuEChERS method and GC–MS/MS. The sample was extracted with acetonitrile, cleaned up by primary–secondary amine and octadecyl-modified silica (C18) sorbents and determined by GC–MS/MS in multireaction monitoring mode. Matrix-matched calibration coupled with internal standard method was applied to compensate for the matrix effect and to quantify the pesticides. The results of all the 116 pesticides showed good linearity in the respective linear range with correlation coefficients (r2) > 0.99. The method limits of quantification were between 0.01 and 0.05 mg kg?1. The recoveries were between 64.3 and 119.4%, with RSD values typically lower than 18.3% at three spiked levels of 0.05, 0.10 and 0.20 mg kg?1. The validated methodology is easy, fast, highly accurate, reliable and sensitive for monitoring and quantification of the 116 pesticide residues in Notoginseng Radix et Rhizoma. In 180 batches of real samples, 11 pesticides were detected and among these quintozene and cyfluthrin were in excess of the standard of European Union maximum residue level for herbs.  相似文献   

17.
The fate of kresoxim-methyl was studied in a tobacco field ecosystem, and a simple and reliable method was developed for the determination of kresoxim-methyl in soil, green and cured tobacco leaves. Kresoxim-methyl residues were extracted from samples with petroleum ether, and determined by gas chromatography (GC) coupled with an electron capture detector (ECD). Kresoxim-methyl (30% suspension concentration) was applied at 150 g a.i. ha–1 (the recommended high dosage) and 225 g a.i. ha–1 (1.5 times the recommended high dosage) in the experimental fields in Huishui and Changsha in China. The limits of detection (LODs) and limits of quantification (LOQs) of kresoxim-methyl in green tobacco leaves, cured tobacco leaves and soil were 0.012 and 0.04 mg kg–1, 0.12 and 0.4 mg kg–1, and 0.0015 and 0.005 mg kg–1, respectively. The average recoveries were 84.5% to 95.7%, 79.8% to 94.3% and 83.3% to 93.8% with relative standard deviations (RSDs) less than 10% in green tobacco leaves at four spiked levels (0.04, 0.2, 2 and 8 mg kg–1), cured tobacco leaves at three spiked levels (0.4, 1 and 10 mg kg–1) and soil at three spiked levels (0.005, 0.05 and 0.5 mg kg–1), respectively. The results showed that the half-lives of kresoxim-methyl in green tobacco leaves and soil were 1.2–5.3 days and 6.7–10.4 days, respectively. At harvest, kresoxim-methyl residues in cured tobacco leaves samples collected 21 days after the last application at the recommended dosage were below 1.0 mg kg–1. These results could help establish appropriate application frequency and harvest intervals in the use of kresoxim-methyl on tobacco plants.  相似文献   

18.
The combination formulation of fluopyram and tebuconazole is used for control of fungal diseases and post-harvest disease management of mango. Dissipation study of the fungicides on mango was carried out after giving applications of fluopyram +tebuconazole at the standard and double doses of 150 + 150 and 300 + 300 g active ingredient hectare?1 (g a.i. ha?1), respectively. Fluopyram residues on mango were 0.8 and 0.9 mg kg?1 and tebuconazole residues, 0.308 and 0.4 mg kg?1 after three and four applications at the standard dose. At double dose treatment the residue levels for fluopyram were 1.266 and 1.453 mg kg?1 and tebuconazole, 0.681 and 0.853 mg kg?1, respectively. Residue dissipation in mango fruits followed first order rate kinetics and the half-life (DT50) were 4.3–5.4 days for fluopyram and 3–3.8 days for tebuconazole. Faster dissipation of the fungicides was observed after the fourth treatment which directly correlated to higher rainfall during that period. The combined residues of fluopyram+tebuconazole reduced to below their maximum residue limits (MRLs) within 36–38 days. Dietary risk assessment on human health indicated that fluopyram and tebuconazole application to mango is unlikely to pose risk to human beings. This study gives valuable information on the judicious use of this combination formulation on mango, especially towards harvest.  相似文献   

19.
Two independent field trials were performed in Guizhou and Hunan, China in 2013 to investigate the dissipation and residue levels of saisentong in tobacco and soil. A novel and accurate method using high-performance liquid chromatography with diode array detection was developed and validated to determine saisentong levels in tobacco and soil. The average recovery of saisentong at fortification levels of 0.5, 2.5, 5.0 and 50.0 mg kg?1 in fresh tobacco ranged from 75.92 to 107.40% with a relative standard deviation (RSD) of 0.94 to 7.55%, that at fortification levels of 0.5, 2.0 and 5.0 mg kg?1 in tobacco powder ranged from 74.96 to 94.43% with a relative standard deviation (RSD) of 4.38 to 8.14%, and that at fortification levels of 0.1, 0.5 and 5.0 mg kg?1 in soil ranged from 86.90 to 100.0% with an RSD of 1.38 to 4.62%. The limit of detection (LOD) of saisentong was 0.15 mg?kg?1 in tobacco and 0.03 mg kg?1 in soil, and the limit of quantification (LOQ) was 0.5 mg kg?1 in tobacco and 0.1 mg kg?1 in soil, respectively. For field experiments, the half-lives of saisentong in tobacco from Guizhou and Hunan were 5.9 and 1.6 days, respectively; those in soil were 14.7 and 12.0 days, respectively. The results suggest that the saisentong dissipation curves followed the first-order kinetic. The terminal residues of saisengtong in tobacco ranged from 0.5 to 9.39 mg kg?1 at pre-harvest intervals (PHI) of 7, 14 and 21 days.  相似文献   

20.
Residue dissipation of hexaconazole and isoprothiolane in the rice field ecosystem was determined by gas chromatography coupled with electron capture detector. Hexaconazole and isoprothiolane (33% microemulsion) were applied at two dosages, 396 g a.i. ha–1 (the recommended dosage) and 594 g a.i. ha–1 (1.5 times the recommended dosage) in the experimental fields in Guizhou, Hunan and Heilongjiang provinces, China, during 2011–2012. The limits of detection and limits of quantification in brown rice were 0.006 and 0.02 mg kg–1 for hexaconazole, 0.0072 and 0.024 mg kg–1 for isoprothiolane, respectively, and they were much below the maximum residue limits (MRLs, 0.1 mg kg–1 for hexaconazole and 1.0 mg kg–1 for isoprothiolane) set by China. Average recoveries of hexaconazole in water, soil, rice plants and brown rice ranged from 77.3% to 93.8% and for isoprothiolane ranged from 78.1% to 99.9% with relative standard deviations < 10%. The results showed that during harvest, the terminal residue levels of hexaconazole and isoprothiolane in brown rice samples were well below the MRLs of China following the interval of 7 days after last application. Therefore, a dosage of 396 g a.i. ha–1 was recommended, which could be considered as safe to human beings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号