首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interfacial dilational viscoelastic properties of two demulsifiers with straight chain (SP-169) and branched chain (AE-121) at the oil-water interfaces were investigated by means of the longitudinal waves method and the interfacial tension relaxation method, respectively. The results obtained by the longitudinal waves method showed that the dilational viscous component for AE-121 and SP-169 also passed through a maximum value with increasing concentration. It was found that the maximum value appeared at different demulsifier concentrations during our experiment frequency; and the higher is the dilational frequency, the lower is the concentration. The influences of AE-121 and SP-169 on the dilational viscoelastic properties of the oil-water interface containing surface-active fraction from Iranian crude oil have been measured. The results clearly stated that both demulsifiers could obviously decrease the dilational elasticity of oil-water interface containing surface-active fraction. At low concentration, because of stronger adsorption ability, SP-169 has stronger ability to decreasing the dilational modulus than AE-121. We also found that the dilational modulus of the interface contained surface-active fraction passed through a minimum value with increasing demulsifier concentration for both demulsifiers. This result indicated the dosage of demulsifier had an optimum value. The results obtained by means of interfacial tension relaxation method showed that the slow relaxation processes involve mainly rearrangement in the conformation of the molecules appeared with increasing demulsifier concentration.  相似文献   

2.
Fourteen ethoxylated polyalkylphenol formaldehyde surfactants were prepared from locally sourced raw materials. These surfactants were used as demulsifiers to resolve asphltenic crude oil emulsions. Different factors affecting demulsification efficiency such as water:oil ratios, surfactant concentration, surfactant molecular weight, ethylene oxide content, alkyl chain length, and asphaltene content were investigated. From the data obtained it was found that the demulsification efficiency increases by increasing the concentration, alkyl chain length and water content in the emulsion. Also it was found that the increase of asphaltene content in the crude oil impeded the demulsification efficiency. The effect of molecular weight was studied and it was found that the demulsification efficiency was controlled by an optimum range of molecular weight between 3640 to 3810 for the family of demulsifiers studied. Regarding the effect of ethylene oxide content in the demulsifier structure, it was found that the maximum demulsification efficiency was obtaind at 40 units ethylene oxide. The maximum demulsification efficiency was obtained by TND5 (m.wt. = 3800, eo = 40 units). With this demulsifier 100% water separation was exhibited after 35 minutes at 150 ppm demulsifier concentration and 50% w/o emulsion. The surface, interfacial tension, and hydrophilic lipophilic balance (HLB) of the invistigated demulsifers were studied. The obtained results justified that they are strongly related to the demulsification effeciency.  相似文献   

3.
The dilational properties of demulsifiers PE1 and PE2 at the decane-water interface were investigated. Meanwhile, the influence of demulsifiers on interfacial dilational modulus of 5% crude oil also was explored. The experimental results indicate that the diffusion process is still not the main factors to control the properties of interfacial film even at large concentration. The dilational modulus of demulsifier PE2 passes through a maximum with the increasing concentration, and that of demulsifier PE1 changes a little with the increasing concentration at the decane-water interface. The dilational moduli of crude oil inerfaces decrease with the addition of both demulsifiers. At low concentration, the effect on reducing the dilational modulus of crude oil is stronger for PE1, which maybe caused by its higher substitution ability. For PE2, the ability to decrease interfacial dilational modulus gets stronger with increasing bulk concentration, which might be explained by that the adsorption increases with increasing concentration. The results of relaxation experiments support those obtain by oscillating barriers method.  相似文献   

4.
The influences of two commercial demulsifiers that have a straight chain and branch chain, respectively, on the dilational viscoelasticity of an oil-water interfacial film containing surface-active fractions from crude oil were investigated. The branch-chain demulsifier AE-121 could efficiently substitute surface-active fractions of different average molecular weights from the oil-water interface, while straight-chain SP-169 could only efficiently substitute those of large average molecular weight. It was apt to form a mix-adsorption layer with surface-active fractions of small average molecular weight. The results showed that the molecular size (or represented by average molecular weights) of the surface-active fractions was an important factor influencing the reciprocity of demulsifiers and surface-active fractions at the oil-water interface. This effect could be well explained by the difference between sizes of surface-active fraction molecules and vacancies between demulsifier molecules at the interface. The results of SDBS also proved this explanation.  相似文献   

5.
The dilational properties of a branch-shaped polyether-type nonionic demulsifier (PEB), a comb-shaped polyether-type nonionic demulsifier (PEC), and a star-shaped polyether-type nonionic demulsifier (PES) at the decane–water interfaces were investigated by Langmuir trough method through oscillating barrier and interfacial tension relaxation methods, which are mainly in the influences of oscillating frequency and bulk concentration on dilational properties. Meanwhile, the effect of demulsifiers on interfacial dilational modulus of diluted crude oil was also explored. The experimental results indicate that all demulsifiers can decrease the dilational modulus of diluted crude oil at the experimental concentration. The addition of PEB causes the dilational modulus of crude oil to be lower than that at the water–decane interface. The demulsifier PEC has a similar effect with PES to influence the interfacial film of crude oil: at low concentration, the dilational modulus of mixed interfacial film is lower than that of demulsifier alone, while at high concentration, the dilational modulus of mixed interfacial film is slightly higher than that of demulsifier alone. The dependence of static modulus on the bulk concentration is consistent with the trend of interfacial dilational modulus with concentration for demulsifiers PEB, PEC, and PES. The studies about the structure modulus show that the new demulsifiers PEC and PES have a stronger ability than branch-shaped demulsifier PEB to destroy the interfacial film.  相似文献   

6.
Demulsification of a synthetic water in oil (W/O) crude oil emulsion was studied by measuring water–oil interfacial properties such as life time and thinning rate of oil film in the presence of various demulsifiers. The results indicated that the interfacial elasticity decreased both the strength and the life time of oil film and film thickness when adding the demulsifiers. The oil film broke when film thickness came to a critical level. As for a demulsifier, the interfacial elasticity was decreased with demulsifier concentration increase, and stayed constant above a critical demulsifier concentration. The rate of dewatering is related to interfacial elasticity. When different demulsifiers were compared, the more the interfacial elasticity was lowered, the more efficient was the dewatering. The mechanism of the different types of demulsifiers was discussed based on the experimental results. The demulsifiers partially replaced the emulsifiers, which led to the interfacial elasticity decreased. The effect of chemical structure of the demulsifiers on water–oil interfacial film was studied.  相似文献   

7.
不同结构破乳剂油水界面扩张粘弹性研究   总被引:13,自引:1,他引:13  
研究了支链破乳剂AE121和直链破乳剂SP169在正癸烷-水界面上的扩张粘弹性质,阐述了两种破乳剂扩张模量随扩张频率和破乳剂浓度的变化规律,考察了两种破乳剂对原油活性组分界面扩张性质的影响,测定了两种破乳剂的水溶液与正癸烷的动态界面张力,并与界面扩张流变性质进行了关联.研究结果表明,两种破乳剂的加入均会大大降低原油活性组分界面膜的扩张模量.较低浓度下直链破乳剂SP169由于吸附能力稍强,降低扩张模量效果较好;而一定浓度以上支链破乳剂AE121由于顶替能力较强,具有一定优势.由于破乳剂本身具有一定的扩张模量,在降低界面扩张模量的效果上,破乳剂的用量并非越大越好.  相似文献   

8.
新型高效原油破乳剂PNT-05的研制与应用   总被引:10,自引:0,他引:10  
针对中原油田采油六厂二区原油破乳脱水过程中存在的脱水速度慢,乳化中间层厚等问题,通过分子结构设计手段,在非离子型破乳剂基础上,经酯化,在破乳剂分子中引入阳离子基团,合成出季胺盐阳离子型破乳剂PNT-05,利用季胺盐阳离子型破乳剂与助剂复配的方法室内解决了中原油田二区原油破乳脱水过程中顾在的问题,与油田现场用破乳剂相比,新的破乳剂体系脱水速度快,脱水效率高,使乳化中间层变薄或消失,同时探讨了季胺盐阳离子型破乳剂PNT-05的作用机制。  相似文献   

9.
Demulsification of water-in-crude oil emulsion was studied at two different salinities, 0.5% and 10% sodium chloride, using five different nonionic surfactants. Equilibrium crude oil-water interfacial tension was measured with drop volume method. Low molecular weight surfactants were found to be completely ineffective as demulsifiers. Three surfactants which were effective demulsifiers, exhibited good interfacial activity, surface adsorption and surface pressure. The performance of the demulsifiers changed with change in salinity of aqueous phase. Surfactants effective as demulsifiers reduced surface tension of water by more than 25 dynes-cm-1. For a given crude oil-water system, the surfactant which developed surface pressure in excess of 15 dynes-cm-1 was found to be good demulsifier for that system. Based upon these studies, a physical model of demulsification has been proposed  相似文献   

10.
This study compares by means of new and advanced destabilization protocols the efficiency of new chemistry environmentally friendly (yellow) demulsifiers with already commercially available red demulsifiers in destabilizing two types of water-in-oil (w/o) emulsions: petroleum crude oil emulsions and model dense packed layers (DPLs). Oil–water separation profiles were measured by low-field nuclear magnetic resonance (NMR), which allows monitoring the water content as well as the mean droplet size in the emulsion as function of the sample height and the time. Separation profiles measured by NMR depicted an increase of the free water release kinetics as the concentration of demulsifier as well as the sedimentation rate increased. The water resolution was not substantially improved by increasing the concentration further while the water quality was worse, most likely due to adsolubilization. There was no observation of DPL formation in these crude oil emulsions. Four different demulsifiers were tested on a model DPL and compared with normal crude oil emulsions. One chemical showed higher efficiency in destabilizing DPL than destabilizing crude oil emulsion. The interfacial rheological properties for one of the systems showed a slight increase in the elastic modulus (E′), as the concentration of demulsifier increased. The increment of the elastic modulus is not totally understood. The most central parameters were represented by principal component analysis (PCA). PCA did not contribute in a better characterization of the chemicals. The new-generation yellow demulsifiers did not reproduce the efficiency of commercially available, less environmentally friendly, (red) demulsifiers.  相似文献   

11.
The dilatational properties of polyether demulsifiers PEA, PEB, PEC, PED, PEF, and PEG at the decane-water interface were investigated. Meanwhile, the effect of demulsifiers with different structures on interfacial dilatational modulus of diluted crude oil also was explored. The properties of demulsifiers are compared and analyzed in combine with the dilatational parameters at decane-water interface and at 5% crude oil-water interface. The results show that interfacial dilatational viscoelasticity could characterize the interfacial behavior of demulsifiers. The demulsifiers, which have different kinds or structures, have different effects on destroying the interfacial film of crude oil with increasing bulk concentration. Therefore, the dosage of demulsifier is a very important role in controlling nature of crude oil film.  相似文献   

12.
In the present work, three polymeric surfactants were prepared and used as demulsifiers; polyalkyl phenol formaldehyde monoethanol amine ethoxylate, eo, 136(D1), polyalkyl phenol formaldehyde diethanol amine ethoxylate, eo, 37(D2) and polyalkyl phenol formaldehyde triethanol amine ethoxylate, eo, 21.5(D3). Their demulsification potency in breaking water‐in‐crude oil emulsions was investigated. In this respect, two naturally occurring Egyptian water‐in‐oil (w/o) emulsions, one of them was waxy and the other was asphaltenic, were used in order to study the demulsification power of these compounds. The data revealed that, the resolution of water from waxy crude emulsion was easier than asphaltenic crude emulsion. The demulsification efficiency increases with increasing demulsifier concentration, contact time and temperature. The interfacial tension (IFT) at the crude oil–water interface was measured, it was found that the concentration of demulsifiers required to cause a minimum IFT are always less than these indicating a maximum demulsification efficiency. All the results were discussed in relation to emulsifier chemical structure and crude oil composition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A comparison of low and high molecular weight demulsifiers and their effect on both crude oil and asphaltene based water-in-oil emulsions is performed. Physical characteristics are given for crudes and for the chemicals. These parameters were then correlated with the demulsifier performance. Results indicate that a significant lowering of interfacial tension is required, but not sufficient for an efficient demulsification. Addition of the chemicals directly to the oil phase prior to emulsification, i.e., as inhibitors, increased the performance of the chemicals significantly. Received: 3 May 2000 Accepted: 10 July 2000  相似文献   

14.
 A method for testing water/oil emulsion droplet membranes selectively has been demonstrated. The method uses electric fields to induce attraction, membrane thinning and coalescence between aqueous droplets deposited in an oil continuum. The coalescence process is monitored visually by the use of videomicroscopy. A set of model oils containing indigenous surfactants (asphaltenes) from a crude oil has been studied, and the effects of asphaltene concentration, oil phase aromaticity, aging of oils and interfacial exposure time have been investigated. The strength of the field at the point of coalescence is defined as the critical parameter describing membrane strength. In the current experiments a.c. fields were used and droplet sizes were of the order of 500–600 μm. Received: 8 October 1998 Accepted in revised form: 11 January 1999  相似文献   

15.
采用悬挂滴方法研究了不同结构聚醚类破乳剂与煤油间的界面张力及界面扩张流变性质. 结果表明, 4种聚醚类破乳剂均具有较强的降低界面张力能力, 且支链化程度越低分子在界面上排列越紧密, 直线型破乳剂在低浓度条件下界面张力最低. 破乳剂的分子尺寸较大, 慢弛豫过程控制界面膜性质, 吸附膜以弹性为主. 同时, 柔性聚氧乙烯链和聚氧丙烯链对界面膜性质的影响较大, 随着支链化程度增大, 界面分子间相互作用增强, 界面膜弹性增强, 黏性降低.  相似文献   

16.
Using a radiosoptopic tracer to measure the concentration of demulsifiers,we studied the distribution regularity of demulsifiers between crude oil and water phases under different temperatures and found that the dewatering rate is related to the partition coefficient of demulsifier, which is quite sensitive to the variation of temperature According to the experimental results, we hold that an effective demulsifier should possess a relatively high partition coefTicient.  相似文献   

17.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

18.
Using a strong light source and a sensitive detector the light transmission of crude oil emulsions can be measured. A semi-empirical theory describes how the measured optical density results from the interaction of absorption and scattering. Changes in the scattering can be used to investigate the coalescence effects caused by demulsifiers. The method is of use in testing demulsifier effectiveness.  相似文献   

19.
Compressibilities (Cs) and excess surface areas (ΔAM) are calculated for mixed films of asphaltenes and resins and asphaltenes combined with different commercial demulsifiers from Langmuir measurements. Both attraction and repulsion is observed between asphaltenes and resins, depending on the composition of the film. High molecular weight demulsifiers present in an asphaltene film increase the compressibility and the repulsion in the film, which is important for the demulsification process of water and crude oil emulsions.  相似文献   

20.
Various nanoparticles have been applied as chemical demulsifiers to separate the crude-oil-in-water emulsion in the petroleum industry, including graphene oxide (GO). In this study, the Janus amphiphilic graphene oxide (JGO) was prepared by asymmetrical chemical modification on one side of the GO surface with n-octylamine. The JGO structure was verified by Fourier-transform infrared spectra (FTIR), transmission electron microscopy (TEM), and contact angle measurements. Compared with GO, JGO showed a superior ability to break the heavy oil-in-water emulsion with a demulsification efficiency reaching up to 98.25% at the optimal concentration (40 mg/L). The effects of pH and temperature on the JGO’s demulsification efficiency were also investigated. Based on the results of interfacial dilatational rheology measurement and molecular dynamic simulation, it was speculated that the intensive interaction between JGO and asphaltenes should be responsible for the excellent demulsification performance of JGO. This work not only provided a potential high-performance demulsifier for the separation of crude-oil-in-water emulsion, but also proposed novel insights to the mechanism of GO-based demulsifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号