首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Confinement of fluids in porous media leads to the presence of solid–fluid (SF) interfaces that play a key role in many different fields. The experimental characterisation of SF interfacial properties, in particular the surface tension, is challenging or not accessible. In this work, we apply mean-field density functional theory (DFT) to determine the surface tension and also density profile of a Lennard-Jones fluid in slit-shaped pores for realistic amounts of adsorbed molecules. We consider the pore walls to interact with fluid molecules through the well-known 10-4-3 Steele potential. The results are compared with those obtained from Monte Carlo simulations in the Grand Canonical Ensemble (GCMC) using the test-area method. We analyse the effect on the adsorption and interfacial phenomena of volume and energy factors, in particular, the pore diameter and the ratio between SF and fluid–fluid dispersive energy parameters, respectively. Results from DFT and GCMC simulations were found to be comparable, which points to their reliability.  相似文献   

2.
This paper demonstrates the effectiveness of using multiple-histogram reweighting (MHR) to study phase transitions in confined fluids by examining capillary condensation, prewetting, and layering transitions for different systems. A comparison is made with previously published simulations, where available, to establish the accuracy of MHR as applied to inhomogeneous systems. Overlap between adjacent state points is assessed through single-histogram reweighting. Capillary condensation for methane adsorption in slit-like graphite pores exhibits 2D behaviour. Crossover of the effective exponent for the width of the coexistence curve from 2D Ising-like (1/8) further away from the critical point to mean-field (1/2) near the critical point is observed. The reduced critical temperature, the density and the effective value of the exponent for the model system are 0.77, 0.482, and 0.119, respectively, based on a fit to the simulation data. Prewetting transitions are observed for adsorption of Ar on solid CO2 using model potentials. The wetting temperature is estimated based on the intersection of the pre-wetting and bulk vapour-liquid lines, and also by extrapolation to zero of the difference between the saturation and prewetting chemical potentials. The reduced wetting temperature is estimated to be around 0.69. The reduced prewetting critical temperature, calculated from the disappearance of the two peaks in the density probability distribution, is estimated to be 0.92. The monolayer to bilayer (1-2) transition for propane on graphite is computed over a range of temperatures. Results for the 1–2 layering transition computed from MHR from a small system are in good agreement with grand canonical Monte Carlo simulations for a much larger system.  相似文献   

3.
Using a mean-field density functional approach we investigate phase separation transition in a binary mixture of Gaussian-core molecules confined in narrow slit-like pores. We consider pores with repulsive and attractive walls. In the case of fluid confinement in pores with repulsive and non-selective attracting walls, no phase separation in the confined fluid, prior to the bulk separation transition, was observed. However, in the case of pores with the walls selectively attracting fluid particles, we reveal that the separation transition may take place as a two-step process. During the first step the composition change occurs within a few layers adjacent to the pore walls, whereas in the second step, it takes place in the pore interior.  相似文献   

4.
Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.  相似文献   

5.
Phase transitions of simple fluids and binary fluid mixtures confined into long cylindrical pores are re-examined, such as capillary condensation/evaporation and wetting transitions. While a large part of the literature ignores the fact that due to the quasi-one-dimensional character of these systems a singular behavior associated with a sharp phase transition cannot occur, we pay attention to the extent in which these phase transitions are smoothed out (in relation to the magnitude of the pore cross-sectional area). We argue that the finiteness of the pore length is an important parameter which controls the physical phenomena that are observed in simulations (and presumably also experiments explaining the distinction between the apparent “pore critical temperature” and the “hysteresis critical temperature”). We illustrate our arguments with recent findings from simulations of a lattice gas/Ising system and of the Asakura-Oosawa model of colloid-polymer mixtures.  相似文献   

6.
ABSTRACT

We present a numerical study of a simple density functional theory model of fluid adsorption occurring on a planar wall decorated with a narrow deep stripe of a weaker adsorbing (relatively solvophobic) material, where wall-fluid and fluid-fluid intermolecular forces are considered to be dispersive. Both the stripe and outer substrate exhibit first-order wetting transitions with the wetting temperature of the stripe lying above that of the outer material. This geometry leads to a rich phase diagram due to the interplay between the pre-wetting transition of the outer substrate and an unbending transition corresponding to the local evaporation of liquid near the stripe. Depending on the width of the stripe, the line of unbending transitions merges with the pre-wetting line inducing a two-dimensional wetting transition occurring across the substrate. In turn, this leads to the continuous pre-drying of the thick pre-wetting film as the pre-wetting line is approached from above. Interestingly we find that the merging of the unbending and pre-wetting lines occurs even for the widest stripes considered. This contrasts markedly with the scenario where the outer material has the higher wetting temperature, for which the merging of the unbending and pre-wetting lines only occurs for very narrow stripes.  相似文献   

7.
利用密度泛函理论并结合改进的基本度量理论研究了受限于对称性破缺狭缝间氢键流体的相平衡. 首先根据氢键流体的吸附-脱附等温线及相应巨势获得不同条件下氢键流体的相图. 进一步讨论了氢键作用、狭缝间距、狭缝与流体分子间相互作用及对称性破缺程度等因素对氢键流体相平衡的影响. 结果表明, 由于狭缝与流体分子及流体分子间的相互作用存在竞争, 使得受限于对称性破缺条件下的氢键流体呈现更为复杂的相态特征.  相似文献   

8.
The confinement of a lattice fluid in a set of slitlike pores separated by semipermeable walls with a finite width has been studied. The walls are modelled by a square-well repulsive potential with a finite height. The thermodynamic properties and the phase behaviour of the system are evaluated by means of Monte Carlo simulations. For some states theoretical calculations have been made using a mean-field-type theory. These investigations confirm previous findings for confined Lennard-Jones fluids, obtained from a density functional approach. For intermediate and low potential barriers that separate the pores, the isotherms exhibit two hysteresis loops and the liquid-vapour coexistence curve divides into two branches describing condensation inside the pore and inside the permeable wall. These two branches are separated by a triple point. At temperatures lower than the triple point temperature, the condensation takes place instantaneously in both the pore and inside the permeable wall. It was found that when the temperature is scaled by the bulk critical temperature, the phase diagram emerging from this simple mean-field treatment is close to the phase diagram obtained from simulation.  相似文献   

9.
A density functional approach is used to study the adsorption of the four-bonding-site model associating Lennard-Jones fluid in slit-Like pores with energetically heterogeneous walls. The fluid-wall potential is qualitatively similar to that invoked by Röcken, P., Somoza, A., Tarazona, P., and Findenegg, G. H., 1999, J. chem. Phys., 108, 8089, i.e. it consists of a homogeneous part that varies in the direction perpendicular to the wall and a periodic part, varying also in one direction parallel to the wall. Both parts are modelled by Lennard-Jones 9,3-type functions. The structure of the adsorbed film is characterized by the local densities of all particles and the densities of the monomers. The phase diagrams are evaluated for several systems characterized by different corrugation of the adsorbing potential. The adsorbing field is strong enough to allow for the layering transition. As well as the formation of the so-called bridge phase that fills the pore space over the most energetic parts of the wall and of capillary condensation, the layering transition is observed within the first layer adjacent to the pore walls. If the adsorbing potential due to each pore wall is shifted in phase by π/2, the bridge phase is not formed.  相似文献   

10.
11.
Recent theoretical and experimental studies have shown that structured surfaces, which contain patterns of lyophilic surface domains, lead to morphological wetting transitions at which the wetting layer changes its shape in a characteristic and typically abrupt manner. These transitions have been determined for several specific surface domain patterns consisting of circular, striped, or ring-shaped domains, as well as for slit pores and slabs bounded by striped surfaces. Such transitions are predicted to be rather generic and to occur for any type of structured surface.  相似文献   

12.
13.
Extensive simulations of a hard sphere fluid confined between two planar hard walls show the onset of crystalline layers at the walls at about 98.3% of bulk crystallization density rho(f) independent of the wall separations L(z), and is, hence, a single wall phenomenon. As the bulk density far from the wall rho(b) increases, the thickness of the crystalline film appears to increase logarithmically, with (rho(f)-rho(b)) indicating complete wetting by the hard sphere crystal of the wall-fluid interface. Increasing rho(b) further, we observe a jump in the adsorption which depends on L(z) and corresponds to capillary freezing. The formation of crystalline layers below bulk crystallization, the logarithmic growth of the crystalline film, its independence of L(z), and its clear distinction from capillary freezing lend strong evidence for complete wetting by the hard sphere crystal at the wall-fluid interface.  相似文献   

14.
Using density-functional theory, we have analyzed the phase behavior of a model liquid crystal confined between two parallel, planar surfaces (i.e., the so-called slit pore). As a result of confinement, a rich phase behavior arises. The complete liquid-crystal phase diagram of the confined fluid is mapped out as a function of wall separation and chemical potential. Strong commensuration effects in the film with respect to wall separation lead to enhanced smectic ordering, which gives capillary smectization (i.e., formation of a smectic phase in the pore), or frustrated smectic ordering, which suppresses capillary smectization. These effects also produce layering transitions. Our nonlocal density-functional-based analysis provides a unified picture of all the above phenomena.  相似文献   

15.
A confinement of a Lennard-Jones fluid in a system of slitlike pores separated by semipermeable walls of a finite width is studied. The walls are modelled by square-well repulsive potential wells. The structure of the confined fluid is investigated by means of a density functional method. For high potential barriers separating the pores, the phase behaviour of the system is similar to that for a single slitlike pore with impenetrable walls. For intermediate and low potential barriers the system shows different phase behaviour. Within some temperature range the isotherms exhibit two hysteresis loops, which characterize the condensation of the fluid in different parts of the system, namely in the pore and inside the semipermeable walls. The systems characterized by low and intermediate potential barriers exhibit the triple point, such that at temperatures below that triple point the condensation instantaneously takes place in both the pore and inside the permeable wall.  相似文献   

16.
We analyse the phase diagram of a lattice gas model with both condenseation and order-disorder phase transitions, when the system is confined between two walls. The gas-liquid transition is shifted into the, so called, capillary condensation. The crystallization, both from the gas and from the liquid, is also shifted from the bulk values, but the ordered structure is frustrated or enhanced depending on its commensuration with the walls separation, H. This produces a strong oscillatory dependence of the phase diagram with H.  相似文献   

17.
Grand canonical Monte Carlo simulations are used to study the behaviour of triangle-well (TW) fluids with variable well widths confined inside slit pores. The effect of individual factors influencing the properties of confined fluids such as fluid–fluid interactions, pore size and pore wall–fluid interactions are obtained using simulations as it is difficult to experimentally determine the same. An interesting observation of this study is that inside the narrow pore of slit height h* = 5 at the high-pressure condition of P* = 0.8, for the TW fluid with long-range attraction or for the fluid at a low temperature for even a short-range attraction, the density profiles show layering such that there is a sticking tendency of the particles at centre, while there is a depletion of particles near the wall (as the layers at the centre have higher density peak heights than near the walls).  相似文献   

18.
ABSTRACT

We study the structure and liquid-crystalline phase behaviour of a model of confined non-convex circular soft-repulsive nanorings in a planar slit geometry using molecular-dynamics simulation. The separation distance between the structureless parallel soft-repulsive walls is made large enough to allow for the formation of a distinct bulk phase in the central region of the box which is in coexistence with the adsorbed fluid thus allowing the analysis of single-wall effects. As the density of the particles is increased, the fluid adsorbs (wets) onto the planar surfaces leading to the formation of well-defined smectic-A layers with a spacing proportional to the diameter of the rings. An analysis of the nematic order parameter at distances perpendicular to the surface reveals that the particles in each layer exhibit anti-nematic behaviour and planar (edge-on) anchoring relative to the short symmetry axis of the rings. This behaviour is in stark contrast to the behaviour observed in convex disc-like particles that have the tendency to form nematic (discotic) structures with homeotropic (face-on) anchoring. The smectic phases formed by nanorings in the bulk and under confinement are characterised by the formation of low-density layered liquid-crystalline states with large voids, referred to here as lacuna smectic phases. In contrast to what is typically found for confined liquid-crystalline systems involving convex particles, no apparent biaxiality is found for nanorings in planar confinement. We argue that formation of the low-density lacuna smectic layers with planar anchoring is a consequence of the non-convex shape of the circular rings that allow for interpenetration between the particles as observed for nanorings under bulk conditions [C. Avendaño, G. Jackson, E.A. Müller and F.A. Escobedo, Proc. Natl. Acad. Sci. U.S.A. 113, 9699 (2016); H.H. Wensink and C. Avendaño, Phys. Rev. E 94, 062704 (2016)].  相似文献   

19.
Anna Oleksy 《Molecular physics》2013,111(18):2871-2883
As a first step towards a density functional theory (DFT) of wetting by ionic solutions we examine the density profiles of ions and solvent molecules confined near a charged wall, or between two walls, and the corresponding interfacial properties, including adsorption, surface tension, solvation force and electrostatic properties, within the semi-primitive model (SPM) of solutions made up of hard sphere solvent particles and charged hard spheres. Both monovalent and divalent cations with species-dependent diameters are considered. The density functional includes the best available Rosenfeld hard-sphere functional, as well as mean-field and Coulomb correlation contributions. The simpler mean-field functional is found to be adequate, at least for monovalent ions. The size differences lead to an interesting ‘fine structure’ of the density and charge density profiles. Cohesive interactions between all species are shown to lead to significant changes in the density profiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号