首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
New palladium complexes were efficiently synthesized from the reaction of benzimidazolium salts 2a–e, potassium carbonate (K2CO3) and palladium chloride (PdCl2) in pyridine (for 3a–e). The catalytic activity of these complexes in a catalytic system including palladium complexes and K2CO3 in DMF-H2O was evaluated in Suzuki–Miyaura cross-coupling reactions of aryl bromides and chlorides with phenylboronic acid. Our novel complexes show excellent catalytic activities with high turnover numbers (TON) and high turnover frequencies (TOF) (e.g. for the Suzuki–Miyaura reaction: TON up to 370 and TOF up to 123.3?h?1). Both benzimidazolium salts 2a–e and complexes 3 have been characterized using spectroscopic data and elemental analysis. The antimicrobial activity of the N-heterocyclic carbene palladium complexes 3a–e varies with the nature of the ligands. Also, the IC50 values of both, complexes (3a–e) and benzimidazoles 2a–e, have been determined. In addition, the new palladium complexes were screened for their antitumor activity. Complexes 3e and 3d exhibited the highest antitumor effect with IC50 values 6.85?μg/mL against MCF-7 and 10.75?μg/mL against T47D, respectively.  相似文献   

2.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

3.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

4.
A new bis-pyrazole derivative, 2,6-bis-(5-phenyl-1H-pyrazol-3-yl) pyridine (H2BPPP), and two d10 metal complexes [Zn(H2BPPP)Cl2](DMF)2 (1), [Cd(H2BPPP)Cl2](DMF)2 (2) have been synthesized and characterized. There is a tautomeric equilibrium of the bis-pyrazole compound in solution and the H atom of pyrazolyl NH can transfer to the adjacent N atoms. X-ray structure analyses reveal the H atom is on the 2-position of pyrazolyl ring in donor solvents, while the H atom is on the 1-position of pyrazolyl ring in metal complexes. The luminescence of the ligand and complexes have been investigated.  相似文献   

5.
New macrocyclic complexes were synthesized by template reaction of 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane, 1,4-bis(2-carboxyaldehydephenoxy)butane or 1,3-bis(2-carboxyaldehydephenoxy)propane with 1,4-bis(2-aminophenoxy)butane, 1,3-bis(2-aminophenoxy)butane, 1,4-bis(4-chloro-2-aminophenoxy)butane or 1,3-bis(4-chloro-2-aminophenoxy)butane and Cu(NO3)2 ·?3H2O or Cu(ClO4)2 ·?6H2O, respectively. The complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and binuclear.  相似文献   

6.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

7.
A new vic-dioxime 6,7-bis(hydroxyimino)-9,10-diethylidine-5,8,9,10,11,18-hexahydro-5,8,11,18-tetraazadibenzo[a,e]cyclotetradecane-6,7,12,17-tetraone (H2L) and its hydrogen-bridged tetra- and six-coordinate complexes with Ni(II), Co(II), and Co(III) have been synthesized. The six-coordinate complexes of H2L have pyridine and chloride as axial ligands. Hydrogen-bridge complexes were converted to their BF2-bridged analogues by reaction with boron trifluoride etherate. Structures of the H2L and its complexes were proposed from elemental analysis, 1H and 13C NMR, IR and mass spectra.  相似文献   

8.
Two new palladium complexes, [Pd(dpbs)Cl] (1) and [Pd4(dbbs)4] (2) (where (dpbs)2 = o,o′-(N,N′-dipicolinyldene)diazadiphenyl disulfide and (dbbs)2 = N,N′-(1,1′-dithio-bis(phenylene))-bis(salicylideneimine)), have been synthesized and characterized by analytical and spectral (electronic, IR, 1H, 13C spectroscopy) techniques. The structures of 1 and 2 have been solved by single-crystal X-ray diffraction experiments, which indicate distorted square planar coordination geometries around palladium(II) by O, N, and S donors. The metal chelates have been screened for their antibacterial and antioxidant activities, and compared with their respective ligands. The binding properties of the complexes have been studied by electronic absorption, emission spectroscopy, and viscosity measurements. The competitive fluorescence study with ethidium bromide and the effect of iodide concentration on ?uorescence of the complex-DNA system have been investigated. All these experimental results suggest that palladium complexes strongly bind to DNA, presumably via groove binding. The thermodynamic parameters, enthalpy change (ΔH°), and entropy change (ΔS°) were calculated by the Van’t Hoff equation, suggesting hydrogen bonds play a predominant role in the binding of complexes to DNA.  相似文献   

9.
Manganese(IV) complexes [MnIV(npah)(H2O)2] (1) and [MnIV(npah)(A)2]?·?nH2O (where A?=?py (2), 2-pic (3), 3-pic (4), 4-pic (5)) and MnIV(npah)(NN)] (NN?=?bpy (6) and phen (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone in methanol. The composition of the complexes has been established by elemental analyses. Complex 3 has been characterized by mass spectral data also. Structural assessment of the complexes has been based on data from molar conductance, magnetic moment, electronic, electron paramagnetic resonance, and infrared (IR) spectral studies. Molar conductances of the complexes in DMSO suggest non-electrolytes. Magnetic moment and EPR studies suggest +4 oxidation state for manganese in these complexes. Electronic spectral studies suggest six-coordinate octahedral geometry around the metal ions. IR spectra reveal that H4npah coordinates to the metal in enol form. Reaction of the complexes with benzyl alcohol and SO2 has been investigated. Cyclic voltammetric studies of the complexes have also been carried out.  相似文献   

10.
The novel (E,E)-dioxime,7,8-bis(hydroxyimino)-1,14-bis(monoaza[8]crown-6)-benzo[f]-4,11-dioxa-1,14-diazadecane[7,8-g]quinoxaline (H2L), has been synthesized by the reaction of 6,7-diamino-1,12-bis(monoaza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazadecane (4) which has been prepared by the reduction of 6,7-dinitro-1,12-bis(mono-aza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazdecane (3) and cyanogendi-N-oxide. Mononuclear NiII and CuII complexes of H2L have a metal:ligand ratio of 1:2 and the ligand coordinates through two hydroxyimino nitrogen atoms, as do most of the (E,E)-dioximes. The hydrogen-bridged NiII complex was converted into its BF 2 + capped anologue by the reaction with BF3 · Et2O. The reaction of the CuII complex with 2,2′-dipyridyl as an end-cap ligand gave the homotrinuclear complex. Structures for the ligand and its complexes are proposed in accordance with elemental analysis, magnetic susceptibility measurements, 1H, 13C-n.m.r, IR and MS spectral data.  相似文献   

11.
Two ligands, N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine (L1 ) and N,N′-bis- [1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine (L2 ) and their corresponding copper(I) complexes, [Cu(L 1)2]ClO4 (1) and [Cu(L 2)2]ClO4 (2), have been synthesized and characterized by CHN analyses, 1H-NMR, IR, and UV–Vis spectroscopy. The crystal structures of L1 and [Cu(L 1)2]ClO4 (1) were determined from single crystal X-ray diffraction. L1 lies across a crystallographic inversion center and the C=N is approximately coplanar with the benzene ring and adopts E configuration. The coordination polyhedron about copper(I) in 1 is best described as a distorted tetrahedron. Quasireversible redox behavior is observed for the complexes.  相似文献   

12.
Abstract

On reacting 1,2-bis(diphenylphosphino)ethanedichloropalladium(II) with equimolar amount of silver perchlorate, a binuclear complex, di-μ-chloro-bis[1,2-bis(diphenylphosphino)ethane-palladium(II)] (1) is formed. The crystal structure of 1 has been solved. It crystallizes with two chloroform molecules. Chloro bridges are symmetrical and normal (Pd-Cl~2.414(3) Å). The immediate environment around palladium is slightly distorted square planar and the P-Pd-P angle is ~85°. IR bands at 290 and 270cm?1 are observed for the chloro-bridged core of the complex.  相似文献   

13.
The interactions of 1-hydroxopyridine-2-thione or 2-mercaptopyridine N-oxide (LH) with transition and d10 metal ions have been investigated. The complexes [RhL3] and [ML2] (M = Pd, Cd and Hg) were characterized by physicochemical and spectroscopic methods. The bis(1-oxopyridine-2-thionato)palladium(II) chloroform solvate crystallizes in space group Pna21 with a = 9.1569(15), b = 21.306(3), c = 8.4618(14) Â, Z = 4. The structure can be described in terms of rows of bis(2-mercaptopyridine N-oxide) palladium(II) molecules which alternate with another row of molecules at an angle of approximately 24.9°. The coordination geometry about palladium(II) is nearly square-planar.  相似文献   

14.
Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4-tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone)methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene)ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigated  相似文献   

15.
N-4,6-dimethyl-2-pyrimidinylimidazole 1 and its hydroxyethyl derivative 1-(2-hydroxyethyl)-3-(4,6-dimethyl-2-pyrimidinyl)imidazolium chloride 2 have been synthesized and characterized. The attempted synthesis of bis(N-heterocyclic carbene)palladium complexes via the direct reaction of 2 with Pd(OAc)2 results in the unexpected formation of a bis(N-arylimidazole) palladium complex 3. Additionally, the analogous bis(N-methylimidazole) palladium complex 4 has also been synthesized by the above method. Compounds 14 were characterized by elemental analysis, IR, and 1H NMR. Additionally, their crystal structures have been determined by X-ray diffraction. Complexes 3 and 4 were found to be efficient catalysts for the Suzuki reaction.  相似文献   

16.
Two pyrazole-based polydentate ligands, 1,3-bis(5-methyl-3-phenylpyrazol-1-yl)-propan-2-ol (Hmppzpo) and 1,3-bis(5-methyl-3-p-isopropylphenylpyrazol-1-yl)-propan-2-ol (Hmcpzpo), have been synthesized. A third ligand, 1,3-bis(3,5-dimethylpyrazol-1-yl)-propan-2-ol (Hdmpzpo), has been synthetically modified. Seven new M(II) coordination compounds of general formula M2L2X2 (M?=?Zn, Ni; X?=?NO3 or ClO4; L?=?dmpzpo, mppzpo or mcpzpo) or MLX (M?=?Pd; L?=?dmpzpo; X?=?Cl) were synthesized and structurally characterized by elemental analysis and FT-IR analysis. The crystal structures of [Zn2(μ-dmpzpo-O,N,N′)2(NO3)2]?·?2H2O (1?·?2H2O), [Ni2(μ-dmpzpo-O,N,N′)2(CH3CN)2](ClO4)2 (2) and Pd(μ-dmpzpo-N,N′)Cl2 (4) were determined by single-crystal X-ray crystallography. The crystal structures show that complexes 1?·?2H2O and 2 are center-symmetric dinuclear compounds, with two metal ions bridged by two alkoxo groups and each metal ion with a distorted square-pyramidal environment. The palladium complex, 4, displayed square-planar coordination geometry around the Pd(II) ion with trans arrangement.  相似文献   

17.
A novel vic-dioxime ligand with a thiourea moiety, (4E,5E)-1,3-bis{4-[(4-bromophenylamino)methylene]phenyl}-2-thiooxaimidazoline-4,5-dione dioxime (4) (bmdH2) has been synthesized from N,N′-bis{4-[(4-bromophenylamino)methylene]phenyl}thiourea and (E,E)-dichloroglyoxime. The bmdH2 ligand (4) forms transition metal complexes [M(bmdH)2] with a metal?:?ligand ratio of 1?:?2 with M?=?Ni(II), Co(II), and Cu(II). The mononuclear Ni(II), Co(II) and Cu(II) complexes, [Ni(bmdH)2] (5), [Co(bmdH)2] (6) and [Cu(bmdH)2] (7) have the metal ions coordinated through the two N,N atoms, as do most vic-dioximes. Elemental analyses, molar conductivity, magnetic susceptibility, IR, 1H NMR spectra, and UV-Visible spectroscopy were used to elucidate the structures of the ligand and its complexes. Conductivity measurements have shown that the mononuclear complexes are non-electrolytes. In addition, the ligands and metal complexes were screened for antibacterial and antifungal activities by agar well diffusion techniques using DMF as solvent.  相似文献   

18.
Summary Oxomolybdenum(V) complexes of the type (LH4) [MoOCl5] (where LH2 = dimethylene bis-2-benzimidazole or tetramethylene bis-2-benzimidazole), [MoOCl3(LH2)] (where LH2 = tetramethylene bis-2-benzimidazole), [(Mo2O4Cl2-(H2O)3)2(LH2)] (where LH2 = dimethylene bis-2-benzimidazole, tetramethylene bis-2-benzimidazole or hexamethylene bis-2-benzimidazole) and [Mo2O3Cl4(LH2)2] (where LH2 = tetramethylene bis-5-nitro-2-benzimidazole) were prepared and characterised. The mononuclear complexes show u.v.-vis. absorptions characteristic of octahedral molybdenum(V). The dinuclear complexes do not absorb in the visible region, possibly due to the presence of an Mo2O 4 2 +} core, which is also indicated by their diamagnetic behaviour. The biological activities of the free ligands and their complexes have been studied.  相似文献   

19.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

20.
The triorganotin(IV) complex Ph3Sn(OPhMe-2) (1) has been synthesized by the reaction of Ph3SnCl with NaOPhMe-2, while complexes of composition n-Bu3Sn(OPhMe-2) (2) and Me3Sn(OPhMe-2) (3) (where ?OPhMe-2 = ?OC6H4CH3-2) have been obtained from the reaction of n-Bu3SnCl and Me3SnCl with 2-methylphenol in the presence of triethylamine in carbon tetrachloride. The complexes have been characterized by elemental analyses, molar conductance measurements, molecular weight determination, and IR, 1H NMR, 13C NMR, and mass spectral studies. Thermal behavior of the complexes has been studied by TG and DTA techniques. The organotin(IV) complexes have also been screened for antibacterial activity and exhibit appreciable activity. The reactions of the complexes with 3- and 4-cyanopyridines yielded 1 : 1 adducts authenticated by physicochemical and IR and 1H NMR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号