首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many Primary Four students (fourth graders) in Singapore have difficulties initiating or persevering in the problem-solving process even though the curriculum has focused on problem solving since 1992. This study served to examine the role of metacognition in self-regulated problem solving. The study, a quasi-experimental pretest–posttest design involving a convenience sample of 63 students from two intact mixed-ability Primary Four classes, examined the impact of using a metacognitive scheme that focuses on the understanding and planning stages of Pòlya’s four-stage approach on students’ mathematical problem-solving behavior, performance and attitudes. The findings revealed that the metacognitive-based scheme had a positive impact on students’ understanding of the problem posed, solution planning, confidence in and personal control of problem-solving behavior and emotions. It had also helped them to initiate and persevere in the problem-solving process to achieve a higher level of problem-solving success. Limitations and instructional implications are discussed.  相似文献   

2.
The study compares 140 third-grade Israeli students (lower and higher achievers) who were either exposed to self-regulated learning (SRL) supported by metacognitive questioning (the MS group) or received no direct SRL support (the N_MS group). We investigated: (a) mathematical problem solving performance; (b) metacognitive strategy use in three phases of the problem-solving process; and (c) mathematics anxiety. Findings indicated that the MS students showed greater gains in mathematical problem solving performance than the N_MS students. They reported using metacognitive strategies more often, and showed a greater reduction in anxiety. In particular, the lower MS achievers showed these gains in the basic and complex tasks, in strategy use during the on-action phase of the problem solving process and a decrease in negative thoughts. The higher achievers showed greater improvement in transfer tasks and an increase in positive thoughts towards mathematics. Both the theoretical and practical implications of this study are discussed.  相似文献   

3.
The purpose of this study was to enhance our understanding of the relationship between collaborative talk and metacognitive talk during group mathematical problem-solving. Research suggests that collaborative talk may mediate the use of metacognitive talk, which in turn is associated with improved learning outcomes. However, our understanding of the role of group work on the individual use of metacognition during problem-solving has been limited because research has focused on either the individual or the group as a collective. Here, primary students (aged nine to 10) were video-recorded in a naturalistic classroom setting during group mathematical problem-solving sessions. Student talk was coded for metacognitive, cognitive and social content, and also for collaborative content. Compared with cognitive talk, we found that metacognitive talk was more likely to meet the criteria to be considered collaborative, with a higher probability of being both preceded by and followed by collaborative talk. Our results suggest that collaborative metacognition arises from combined individual and group processes.  相似文献   

4.
Over the past decade, the concept of self-regulated learning has broadened to include motivational, volitional, and emotional components next to (meta-)cognitive ones. In this article, we present a meta-emotion perspective as an essential component of a conceptual framework on self-regulation that fully acknowledges the role of emotions. Against this background, a study is presented that attempts to contribute to the clarification of the relevance and the functioning of students’ meta-emotional knowledge and emotional regulation skills in school-related mathematical activities. It investigates the coping strategies that 393 students of the second (age 14) and fourth (age 16) year of secondary school report to use to regulate their emotions in three different mathematical school settings (i.e., a mathematics test, a difficult mathematics homework, and a difficult mathematics lesson). More specifically, it aims (1) to document the nature and frequency of the reported coping strategies, and (2) to explore—for the three different mathematical school settings—relationships between these reported coping strategies and personal characteristics (i.e., students’ familiarity with the particular school settings, their track in secondary education, their achievement level, their age, and gender). The results indicate that students report to know and to make use of several coping strategies in school-related mathematical activities, and reveal that the use of these strategies is related to specific person-related characteristics. In conclusion, we elaborate on how schools and teachers can stimulate students to acquire appropriate strategies and skills to self-regulate their emotions.  相似文献   

5.
We conducted a 7-month video-based study in two sixth-grade classrooms focusing on teachers’ metacognitive and heuristic approaches to problem solving. All problem-solving lessons were analysed regarding the extent to which teachers implemented a metacognitive model and addressed a set of eight heuristics. We observed clear differences between both teachers’ instructional approaches. Besides, we examined teachers’ and students’ beliefs about the degree to which metacognitive and heuristic skills were addressed in their classrooms and observed that participants’ beliefs were overall in line with our observations of teachers’ instructional approaches. In addition, we investigated how students’ problem-solving skills developed as a result of teachers’ instructional approaches. A positive relationship between students’ spontaneous application of heuristics to solve non-routine word problems and teachers’ references to these skills in their problem-solving lessons was found. However, this increase in the application of heuristics did not result in students’ better performance on these non-routine word problems.  相似文献   

6.
Are students transitioning from the secondary level to university studies in mathematics and engineering adequately prepared for education at the tertiary level? In this study, we discuss the prior mathematical knowledge and skills demonstrated by Norwegian engineering (N?=?1537) and calculus (N?=?626) university students by using data from a mathematics assessment administered by the Norwegian Mathematical Council. The assessment examines students’ conceptual understanding, computation skills and problem solving skills on the basis of the mathematics curriculum of lower secondary education. We found that calculus students significantly outperformed engineering students, but both student groups struggled to solve the test, with the calculus and engineering groups scoring an average of 60% and 46%, respectively. Beginning students who fail to master basic skills, such as solving arithmetic and algebra problems, will most likely face difficulties in their further courses. Although few female students enrol in calculus and engineering programmes compared with male ones and are thus underrepresented, male and female students at the same ability level achieved comparable test scores. Furthermore, students reported high levels of intrinsic and extrinsic motivation, and a positive relationship was observed between intrinsic motivation and achievement.  相似文献   

7.
ABSTRACT

A literature review establishes a working definition of recreational mathematics: a type of play which is enjoyable and requires mathematical thinking or skills to engage with. Typically, it is accessible to a wide range of people and can be effectively used to motivate engagement with and develop understanding of mathematical ideas or concepts. Recreational mathematics can be used in education for engagement and to develop mathematical skills, to maintain interest during procedural practice and to challenge and stretch students. It can also make cross-curricular links, including to history of mathematics. In undergraduate study, it can be used for engagement within standard curricula and for extra-curricular interest. Beyond this, there are opportunities to develop important graduate-level skills in problem-solving and communication. The development of a module ‘Game Theory and Recreational Mathematics’ is discussed. This provides an opportunity for fun and play, while developing graduate skills. It teaches some combinatorics, graph theory, game theory and algorithms/complexity, as well as scaffolding a Pólya-style problem-solving process. Assessment of problem-solving as a process via examination is outlined. Student feedback gives some indication that students appreciate the aims of the module, benefit from the explicit focus on problem-solving and understand the active nature of the learning.  相似文献   

8.
For this quantitative study, a total of n = 761 students (58.1% female) from selected fifth- and sixth-grade mathematics classrooms in Alabama were surveyed in order to investigate the relationships between self-regulated learning, motivation, anxiety, attributions and achievement in mathematics. Data analyses revealed that significant contributions are made by motivation and anxiety on both test score and mathematics grade for fifth grade students. Specific factors (e.g., self-efficacy, worry, other, and failure) were related to academic performance while failure attribution was significantly related to mathematics grade. As for sixth grade students, data analyses showed relationships exist between motivation, anxiety and academic performance with specific factors (i.e., self-efficacy, intrinsic value, and worry) significantly predicting both test score and mathematics grade for sixth graders. The findings underlie the importance of motivation and anxiety for students and how these constructs interact to facilitate self-regulation over the course of developing expertise in a domain, such as mathematics.  相似文献   

9.
The purpose of the present study was to investigate preservice secondary mathematics teachers’ metacognitive behaviour in the mathematical problem-solving process. The case study methodology was employed with six preservice mathematics teachers, enrolled at one university in Ankara, Turkey. We collected data by using the think aloud method, which lasted for two sessions. It was found that there was no relationship between academic achievement and frequencies of metacognitive behaviour. However, the types of problems could affect these frequencies. Furthermore, there was no pattern in metacognitive behaviour with respect to achievement and type of problem.  相似文献   

10.
This empirical study explores the roles that Emotional Intelligence (EI) and Emotional Self-Efficacy (ESE) play in undergraduates’ mathematical literacy, and the influence of EI and ESE on students’ attitudes towards and beliefs about mathematics. A convenience sample of 93 female and 82 male first-year undergraduates completed a test of mathematical literacy, followed by an online survey designed to measure the students’ EI, ESE and factors associated with mathematical literacy. Analysis of the data revealed significant gender differences. Males attained a higher mean test score than females and out-performed the females on most of the individual questions and the associated mathematical tasks. Overall, males expressed greater confidence in their mathematical skills, although both males’ and females’ confidence outweighed their actual mathematical proficiency. Correlation analyses revealed that males and females attaining higher mathematical literacy test scores were more confident and persistent, exhibited lower levels of mathematics anxiety and possessed higher mathematics qualifications. Correlation analyses also revealed that in male students, aspects of ESE were associated with beliefs concerning the learning of mathematics (i.e. that intelligence is malleable and that persistence can facilitate success), but not with confidence or actual performance. Both EI and ESE play a greater role with regard to test performance and attitudes/beliefs regarding mathematics amongst female undergraduates; higher EI and ESE scores were associated with higher test scores, while females exhibiting higher levels of ESE were also more confident and less anxious about mathematics, believed intelligence to be malleable, were more persistent and were learning goal oriented. Moderated regression analyses confirmed mathematics anxiety as a negative predictor of test performance in males and females, but also revealed that in females EI and ESE moderate the effects of anxiety on test performance, with the relationship between anxiety and test performance linked more to emotional management (EI) than to ESE.  相似文献   

11.
Flipped learning is gaining traction in K-12 for enhancing students’ problem-solving skills at an early age; however, there is relatively little large-scale research showing its effectiveness in promoting better learning outcomes in higher education, especially in mathematics classes. In this study, we examined the data compiled from both quantitative and qualitative measures such as item scores on a common final and attitude survey results between a flipped and a traditional Introductory Linear Algebra class taught by two individual instructors at a state university in California in Fall 2013. Students in the flipped class were asked to watch short video lectures made by the instructor and complete a short online quiz prior to each class attendance. The class time was completely devoted to problem solving in group settings where students were prompted to communicate their reasoning with proper mathematical terms and structured sentences verbally and in writing. Examination of the quality and depth of student responses from the common final exam showed that students in the flipped class produced more comprehensive and well-explained responses to the questions that required reasoning, creating examples, and more complex use of mathematical objects. Furthermore, students in the flipped class performed superiorly in the overall comprehension of the content with a 21% increase in the median final exam score. Overall, students felt more confident about their ability to learn mathematics independently, showed better retention of materials over time, and enjoyed the flipped experience.  相似文献   

12.
13.
Several studies have explored students’ understanding of the relationships between definite integrals and areas under curve(s). So far, however, there has been less attention to students’ understanding of the Fundamental Theorem of Calculus (FTC). In addition, students’ metacognitive experiences and skills whilst solving FTC questions have not previously been explored. This paper explored students’ mathematical performance, metacognitive experiences and metacognitive skills in relation to FTC questions by interviewing nine university and eight Year 13 students. The findings show that several students had difficulty solving questions related to the FTC and that students’ metacognitive experiences and skills could be further developed.  相似文献   

14.
从实证的角度探讨数学解题的元认知模型.以数学解题中的元认知知识、元认知体验、元认知策略三者为基本因素,研制一份元认知问卷;施测问卷,对数据进行探索性因素分析和验证性因素分析,检验因素假设与数据之间的拟合程度.施测正式问卷于高师生,结果表明,高师生数学解题的元认知模型还保持一定程度的发展,而且发展不平衡.总体水平而言,女生比男生好;大三学生明显高于大二、大一学生,大一优于大二,大二年级是个转折时期.  相似文献   

15.
The purpose of this study was to analyse secondary school students’ (N = 16) computer-supported collaborative mathematical problem solving. The problem addressed in the study was: What kinds of metacognitive processes appear during computer-supported collaborative learning in mathematics? Another aim of the study was to consider the applicability of networked learning in mathematics. The network-based learning environment Knowledge Forum (KF) was used to support students’ collaborative problem solving. The data consist of 188 posted computer notes, portfolio material such as notebooks, and observations. The computer notes were analysed through three stages of qualitative content analysis. The three stages were content analysis of computer notesin mathematical problem solving, content analysis of mathematical problem solving activity and content analysis of the students’ metacognitive activity. The results of the content analysis illustrate how networked discussions mediated mathematical knowledge and students’ questions, while the mathematical problem solving activity shows that the students co-regulate their thinking. The results of the content analysis of the students’ metacognitive activity revealed that the students use metacognitive knowledge and make metacognitive judgments and perform monitoring during networked discussions. In conclusion, the results of this study demonstrate that working with the networked technology contributes to the students’ use of their mathematical knowledge and stimulates them into making their thinking visible. The findings also show some metacognitive activity in the students’ computer-supported collaborative problem solving in mathematics.  相似文献   

16.
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students’ attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students’ attitudes toward mathematics during a ‘mainstream’ calculus course while controlling for student backgrounds. The attitude measure combines students’ self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted ‘good teaching’ practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational ‘technology’ (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students’ attitudes towards mathematics. (3) ‘Ambitious teaching’ (e.g. group work, word problems, ‘flipped’ reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional ‘good teaching’ practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do not appear to have a reliable, positive impact on student attitudes toward mathematics.  相似文献   

17.
18.
Building on prior efforts, we re-conceptualize metacognition on multiple levels, looking at the sources that trigger metacognition at the individual level, the social level, and the environmental level. This helps resolve the paradox of metacognition: metacognition is personal, but it cannot be explained exclusively by individualistic conceptions. We develop a theoretical model of metacognition in collaborative problem solving based on models and modeling perspectives. The theoretical model addresses several challenges previously found in the research of metacognition. This paper illustrates how metacognition was elicited, at the environmental level, through problems requiring different problem-solving processes (definition building and operationalizing definitions), and how metacognition operated at both the individual level and the social level during complex problem solving. The re-conceptualization of metacognition has the potential to guide the development of metacognitive activities and effective instructional methods to integrate them into existing curricula that are necessary to engage students in active, higher-order learning.  相似文献   

19.
Recent research has shown that many upper elementary school children do not master the skill of solving mathematical application problems. In this design experiment, a learning environment for teaching and learning how to model and solve mathematical application problems was developed and tested in 4 classes of 5th graders. Pupils were taught a series of heuristics embedded in an overall metacognitive strategy for solving mathematical application problems. Meanwhile, pupils of 7 control classes followed regular mathematics classes. The implementation and effectiveness of the experimental learning environment were tested in a study with a pretest-posttest-retention test design with an experimental and a control group. The results indicate that the intervention had a positive effect on different aspects of pupils' mathematical modeling and problem-solving abilities.  相似文献   

20.
Recent research has shown that many upper elementary school children do not master the skill of solving mathematical application problems. In this design experiment, a learning environment for teaching and learning how to model and solve mathematical application problems was developed and tested in 4 classes of 5th graders. Pupils were taught a series of heuristics embedded in an overall metacognitive strategy for solving mathematical application problems. Meanwhile, pupils of 7 control classes followed regular mathematics classes. The implementation and effectiveness of the experimental learning environment were tested in a study with a pretest-posttest-retention test design with an experimental and a control group. The results indicate that the intervention had a positive effect on different aspects of pupils' mathematical modeling and problem-solving abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号