首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mononuclear nickel(II) and copper(II) complexes, [Ni(L)2(py)2] (1), [Ni(L)2(DMF)(H2O)] (2), and [Cu(L)2] (3), where HL = 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol, py = pyridine and DMF = N,N-dimethylformamide, have been synthesized and their structures determined by single crystal X-ray analysis. Complexes 1–3 crystallized in the monoclinic system of the space groups C2/c, P21/n, and P21/c, respectively. The crystal structures of 1 and 2 present an octahedral geometry at the metal center and 3 shows a square-planar geometry. The FT-IR spectra, UV–vis spectra, and magnetic susceptibility measurements agree with the observed crystal structures. EPR spectra indicate a dx2–y2 ground state (g|| > g > 2.0023 and A|| > A) for 3 at RT and LNT. The results of simultaneous TG-DTA analyses of 1 and 3 showed the final degradation products are NiO for 1 and CuO for 3. The Schiff base (HL) behaves as monobasic bidentate ligand possessing N and O donor atoms. Electrochemical properties for the complexes are similar and involve two irreversible redox processes. Complex 3 exhibits the ability to inhibit jack bean urease, although its Schiff base has no ability to inhibit urease. Complex 1 exhibits more active scavenging effects against O2? than HL, 2 and 3 under the same conditions. Antibacterial screening activities of these complexes were also investigated.  相似文献   

2.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

3.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

4.
Three new copper(II) complexes [Cu(PSBP)2](NO3)(BF4) (1), [Cu(DAPBMA)2](BF4)2 (2), and [Cu(ImH)4(NO3)2] (3), where PSBP = 4-phenylsemicarbazide-2-benzoylpyridine, DAPBMA = 2,6-diacetylpyridine-bis-4-methoxyaniline, and ImH = Imidazole, have been synthesized and characterized by elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band electron paramagnetic resonance (EPR), electronic spectroscopy, and cyclic voltammetry. Frozen solution EPR spectra of the complexes have axial features with g > g > 2.003 suggesting the presence of a d x 2? y 2 ground state. Single crystal X-ray analyses of 13 reveal the presence of distorted octahedral geometry. All complexes exhibit significant superoxide dismutase activity.  相似文献   

5.
A five-coordinate copper(II) complex with the tripod ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) and salicylate, with the composition [Cu(Mentb) (salicylate)](ClO4) · 2DMF, was synthesized and characterized by elemental and thermal analyses, electrical conductivity, IR and UV-Vis spectral measurements. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. The Cu(II) is five-coordinate with four N atoms from the Mentb ligand and an O atom of the monodentate salicylate ligand. The N4O donors are in a distorted trigonal-bipyramid geometry. Cyclic voltammograms indicate a quasireversible Cu2+/Cu+ couple. The X-band EPR spectrum of the complex confirms the trigonal-bipyramidal structure with g < g and a very small value of A (41 × 10?4 cm?1).  相似文献   

6.

Abstract  

Three copper(II), one zinc(II), and one ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different metal/ligand molar ratios, formulated as [Cu(3-bromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (1), [Cu(3,8-dibromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (2), [Cu(3,8-dibromo-phen)(ClO4)(H2O)3](ClO4)(H2O)3 (3), [Zn(3,8-dibromo-phen)2(H2O)2](ClO4)2(H2O)2 (4), and [Fe(3,8-dibromo-phen)3](ClO4)2(H2O)(CH4O)(C3H6O)2 (5) (phen = 1,10-phenanthroline), have been synthesized and characterized in this paper. X-ray single-crystal diffraction studies reveal the different crystallographic symmetry and packing fashions between neighboring phen rings in 1:1 Cu(II) complexes 13 due to the alteration of bromo substituent 1,10-phenanthroline ligands and coordinated or free solvent molecules. Additionally, in 1:2 Zn(II) and 1:3 Fe(II) complexes 4 and 5, continuous π–π stacking and alternating π–π and dimeric p–π stacking are found.  相似文献   

7.
Reaction of the Schiff base, 1-(4-methylimidazol-5-yl) phenylhydrazonopropane-2-one oxime (LH), with copper(II) perchlorate hexahydrate and copper(II) nitrate trihydrate in a 1 : 1 M proportion in methanol affords [Cu2L2(H2O)(ClO4)](ClO4) (1) and [Cu2L2(H2O)2](NO3)2] (2) in moderate yields. Both 1 and 2 have been characterized by elemental analysis, ESI-MS, FT-IR, UV–vis absorption spectroscopy, EPR, electric conductivity, and magnetic susceptibility measurements. The X-ray crystal structures of 1·CH3COCH3 and 2 have been determined. Both compounds are dinuclear copper(II) complexes, with each copper μ2-bridged by two oxime ligands in a μ2-η1,η2 fashion. Variable temperature magnetic studies on 1 and 2 show that both compounds are dominated by an antiferromagnetic coupling through the oxime bridges.  相似文献   

8.
Two copper(II) complexes, [Cu2(μ-benzoato)(L1)2]NO3·2H2O (1) and [Cu2(μ-succinato)(L2)2(H2O)]ClO4 (2), have been synthesized, where L1 = N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzoylhydrazone and L2 = N′-[(E)-pyridin-2-ylmethylidene]benzoylhydrazone. These complexes were characterized including by single-crystal X-ray diffraction studies. The copper is five-coordinate in 1 while in 2 one copper is five-coordinate and the other is six-coordinate. Electrochemical behavior of these complexes was measured by cyclic voltammetry. The conproportionation equilibrium constants (Kcon) for both complexes have been estimated. The superoxide dismutase (SOD) activities of 1 and 2 were measured by nitro blue tetrazolium assay. Complex 1 has better SOD activity than 2.  相似文献   

9.
Employing 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole (bpb) as a monodentate ligand, a new greenish-blue copper(II) complex, [Cu(bpb)2(NO3)2] (1a), has been synthesized. 1a has been characterized analytically and spectroscopically. The X-ray crystal structure of 1a reveals that it adopts a cis disposition with respect to the ligands. The solid state structure of 1a is stabilized by intramolecular offset face-to-face ππ stacking. Non-covalent supramolecular edge-to-face C–H?π interactions with neighboring molecules give 1-D supramolecular chains that further lead to the formation of an assembled 3-D supramolecular metal-organic framework via hydrogen bonding interactions. 1a shows blue fluorescence most likely due to intramolecular offset face-to-face ππ stacking. At room temperature, 1a is one-electron paramagnetic. It shows a rhombic EPR spectrum with g1 = 2.12, g2 = 2.42, and g3 = 2.52 in the solid state at liquid nitrogen temperature. In cyclic voltammetry, 1a displays a one-electron oxidative Cu(II)/Cu(III) couple. Our DFT calculations, corroborate the observed experimental results of 1a.  相似文献   

10.
Two new unsymmetrical copper(II) Schiff base complexes, [CuLn(py)]ClO4 (n = 1, 2) in which Ln represents a tridentate N2O type Schiff base ligand, were synthesized. Lns were derived from monocondensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or 3-methoxysalicylaldehyde. The reaction between [CuLn(py)]ClO4 and other salicylaldehyde derivatives resulted in new N2O2 unsymmetrical tetradentate CuII complexes, CuL3–6. Crystal structures of [CuL1(py)]ClO4, CuL4, and CuL5 were obtained. These new complexes as well as a series of related symmetrical ones (i.e. CuL7–12) were tested for their in vitro anticancer activity against human liver cancer cell line (Hep-G2) by MTT and apoptosis assay. All of the complexes showed considerable cytotoxic activity against tumor cell lines (IC50 = 5.13–16.24 μg mL?1). The symmetrical CuL7 was the most potent anticancer derivative (IC50 = 5.13 μg mL?1) compared to the control drug 5-FU (IC50 = 5.4 μg mL-1, p < 0.05). Flow cytometry experiments showed that the copper derivatives especially [CuL2(py)]ClO4 and CuL7 induced more apoptosis on Hep-G2 tumor cell lines compared to 5-FU.  相似文献   

11.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

12.
Three new Ru(II) complexes, [Ru(dmb)2(ipad)](ClO4)2 (dmb = 4,4′-dimethyl-2,2′-bipyridine, ipad = 2-(anthracene-9,10-dione-2-yl) imidazo[4,5-f][1,10]phenanthroline, 1), [Ru(dmp)2(ipad)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, 2), and [Ru(dip)2(ipad)](ClO4)2 (dip = 4,7-diphenyl-1,10-phenanthroline, 3), have been synthesized and characterized. The three Ru(II) complexes intercalate with the base pairs of DNA. The in vitro antiproliferative activities and apoptosis-inducing characteristics of these complexes were investigated. The complexes exhibited cytotoxicity against various human cancer cell lines. BEL-7402 cells displayed the highest sensitivity to 1, accounted for by the greatest cellular uptake. Complex 1 was shown to accumulate preferentially in the nuclei of BEL-7402 cells and cause DNA damage and induce apoptosis, which involved cell cycle arrest and reactive oxygen species generation.  相似文献   

13.
New energetic materials, [Ca(MCZ)3(H2O)2](ClO4)2 and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n, are synthesized and tried as alternatives to common primary explosives. Both the crystal structures were determined by single-crystal X-ray diffraction. The crystal of [Ca(MCZ)3(H2O)2](ClO4)2 belongs to the monoclinic, P21/c space group, a = 14.168(3) Å, b = 8.5938(18) Å, c = 18.889(4) Å, β = 111.234(2)°, V = 2143.8(8) Å3, ρ = 1.6893 g cm?3, and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n belongs to the triclinic, P-1 space group, a = 7.166(2) Å, b = 10.461(2) Å, c = 11.738(4) Å, α = 110.563(5)°, β = 93.799(2)°, γ = 96.864(3)°, V = 812.4(4) Å3, ρ = 2.185 g cm?3. Their thermal stabilities were investigated by differential scanning calorimetry (DSC), and exothermic peak temperatures with a heating rate of 10 °C min?1 are 249.7 and 181.7 °C, respectively. Non-isothermal reaction kinetics parameters were calculated via both Kissinger’s method and Ozawa-Doyle’s method to work out EK = 124.6 kJ mol?1, lgAK = 10.38, EO = 126.7 kJ mol?1 for the calcium complex and EK = 100.3 kJ mol?1, lgAK = 9.50, EO = 102.6 kJ mol?1 for the barium complex. Additionally, the critical temperatures of thermal explosion, ΔS, ΔH, and ΔG were calculated as ?231.2 J K?1 mol?1, 120.417 kJ mol?1, 236.728 kJ mol?1 for the calcium complex and ?230.6 J K?1 mol?1, 96.723 kJ mol?1, 195.938 kJ mol?1 for the barium complex. As for their explosive nature, sensitivities toward impact and friction were tested. Both [Ca(MCZ)3(H2O)2](ClO4)2 and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n are insensitive to friction (>360 N); their impact sensitivities are acceptable (20 and 13 J). Both compounds are energetic complexes.  相似文献   

14.
The rates of aqua substitution from [Pt{2-(pyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(H2Qn)], [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(dCH3Qn)], [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]quinoline}(H2O)2](ClO4)2, [Pt(dCF3Qn)], and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF3Py)], with three sulfur donor nucleophiles were studied. The reactions were followed under pseudo-first-order conditions as a function of nucleophile concentration and temperature using a stopped-flow analyzer and UV/visible spectrophotometry. The substitution reactions proceeded sequentially. The second-order rate constants for substituting the aqua ligands in the first substitution step increased in the order Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(H2Qn) < Pt(dCF3Py), while that of the second substitution step was Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(dCF3Py) < Pt(H2Qn). The reactivity trends confirm that the quinoline substructure in the (pyrazolylmethyl)quinoline ligands acts as an apparent donor of electron density toward the metal center rather than being a π-acceptor. Measured pKa values from spectrophotometric acid–base titrations were Pt(H2Qn) (pKa1 = 4.56; pKa2 = 6.32), Pt(dCH3Qn) (pKa1 = 4.88; pKa2 = 6.31), Pt(dCF3Qn) (pKa1 = 4.07; pKa2 = 6.35), and Pt(dCF3Py) (pKa1 = 4.76; pKa2 = 6.27). The activation parameters from the temperature dependence of the second-order rate constants support an associative mechanism of substitution.  相似文献   

15.

The tris-(bidentate)chelate complexes [Cu(NN)3](PF6)2 where NN=2,2'-bipyridine or 1,10-phenanthroline have been isolated as secondary products in the reaction between the dimers [{Cu(NN)}2(μ-OH)2](PF6)2·2H2O and di-2-pyridylketone. the X-ray crystal structure of [Cu(phen)3](PF6)2 showed a distorted octahedral C 2 geometry around teh metal atom, with two Cu-N distances being much longer than the other four. Magnetic susceptibility measurements (in the 4.4-290K range) correspond, in both cases, to a d9 configuration without significant magnetic interaction. A signal (g=2.102) was observed in the EPR spectrum of the bipy complex and the two axial components were resolved for the phen complex, with g||=2.249, g=2.083 and A||=137 x 10-4cm-1. In this case also a signal at g=2.128 is observed.  相似文献   

16.
[Mn(5-ATZ)2Cl2]n (1) (5-ATZ – 5-amino-1-H-tetrazole) was synthesized from the reaction of 5-ATZ and manganese(II) chloride and isolated by solution evaporation at room temperature. 1 was characterized by elemental analysis, X-ray crystallography, infrared, and EPR spectroscopy as well as magnetic measurements. In the crystal structure, [Mn(5-ATZ)2Cl2] units are linked by double μ2-bridging chlorides to form 1-D chains parallel to the a-axis. The Mn sphere approximates to octahedral with the metal coordinated by four chlorides in the equatorial plane and two 5-ATZ molecules, bound through their ring nitrogens, in axial positions. The intramolecular N–H···Cl hydrogen bond between the 5-ATZ amino group and the adjacent coordinated Cl? stabilizes the chain. N–H···N hydrogen bonds between adjacent chains form a 3-D supramolecular framework. No hyperfine coupling to the Mn nuclei (I = 5/2) is observed in the powdered EPR spectrum of 1 at 77 K. The frozen solution EPR spectrum provides evidence of the mononuclearity of 1 in methanol. The magnetic properties have been analyzed using the Hamiltonian H = –JSi · Si+1 with J = ?1.38(3) cm?1 and g = 2.00(1). A small value of the exchange parameter is typical for 1-D six-coordinate bis(μ2-chloro) Mn(II) polymers.  相似文献   

17.
Three new coordination polymers, [Cu(μ3-tdp)(im)2]n (1), {[Cu(μ3-tdp)(1-mim)2]·0.5H2O}n (2) and {[Cu23-tdp)2(4-mim)4]·H2O}n (3) [tdpH2 = 3,3′-thiodipropionic acid, im = imidazole, 1-mim = 1-methylimidazole and 4-mim = 4-methylimidazole], have been prepared and characterized by spectroscopic techniques (IR and UV–Vis), elemental analyzes, magnetic measurements, thermal analyzes, and single-crystal X-ray diffraction. Complexes 1–3 crystallize in the monoclinic system with space groups of C2/c and P21/c, respectively. In 1–3, tdp is a bridging ligand to form 1-D chains, which are extended into a 2-D layer by hydrogen bonding and π···π interactions. The 3,3′-thiodipropionate exhibits an unexpected coordination mode in 1–3. Simulations were used to assess the potential of the complexes in H2 storage applications.  相似文献   

18.
The structural characterization of tetranuclear cage-type cadmium(II) carboxylate [Cd4(2-cpida)2(2,2′-bpy)6]·(2,2-bpy)·(ClO4)·3H2O (1) (2-H3cpida = N-(2-carboxyphenyl)iminodiacetic acid, 2,2′-bpy = 2,2′-bipyridine) is described. H-bonding interactions between three lattice water molecules form a V-shaped trimer (H2O)3, which is stabilized by 1. In addition, luminescence investigations revealed that 1 shows enhanced emissions as compared with free 2-H3cpida in the liquid state.  相似文献   

19.
20.
The reaction of a mixture of cis and trans-[PtCl2(SMe2)2] with 4,7-phen (4,7-phen = 4,7-phenanthroline) in a molar ratio of 1 : 1 or 2 : 1 resulted in the formation of mono and binuclear complexes trans-[PtCl2(SMe2)(4,7-phen)] (1) and trans-[Pt2Cl4(SMe2)2(μ-4,7-phen)] (2), respectively. The products have been fully characterized by elemental analysis, 1H, 13C{1H}, HHCOSY, HSQC, HMBC, and DEPT-135 NMR spectroscopy. The crystal structure of 1 reveals that platinum has a slightly distorted square planar geometry. Both chlorides are trans with a deviation from linearity 177.66(3)°, while the N–Pt–S angle is 175.53(6)°. Similarly, the reaction of a mixture of cis and trans-[PtBr2(SMe2)2] with 4,7-phen in a 1 : 1 or 2 : 1 mole ratio afforded the mono or binuclear complexes trans-[PtBr2(SMe2)(4,7-phen)] (3) and trans-[Pt2Br4(SMe2)2(μ-4,7-phen)] (4), respectively. The crystal structure of trans-[Pt2Br4(SMe2)2(μ-4,7-phen)].C6H6 reveals that 4,7-phen bridges between two platinum centers in a slightly distorted square planar arrangement of the platinum. In this structure, both bromides are trans, while the PtBr2(SMe2) moieties are syn to each other. NMR data of mono and binuclear complexes of platinum 14 show that the binuclear complexes exist in solution as a minor product, while the mononuclear complexes are major products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号