首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A novel adsorbent of multi-wall carbon nanotubes (MWCNTs) chemically modified silica (MWCNTs-silica) was synthesised and employed as the adsorbent material for solid-phase extraction (SPE) of trace Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) in environmental water samples followed by inductively coupled plasma optical emission spectrometry detection. This material inherits the advantages of nanomaterial MWCNTs and conventional silica with dual functional groups (–NH2 and –COOH), and avoid the problem of nanomaterial in SPE, such as high pressure. The factors affecting the separation and preconcentration of target elements such as pH, sample flow rate and volume, eluent concentration and volume were investigated. Under the optimised conditions, the detection limits for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) were 0.27, 0.11, 0.45, 0.91, 0.55 and 0.67 μg L?1 with the relative standard deviations of 3.1, 5.9, 4.1, 4.0, 7.3 and 8.6% (c = 10 μg L?1, n = 7), respectively. The adsorption capacity of MWCNTs-silica was 26.6, 70.0, 13.8, 58.0, 20.0 and 20.0 mg g?1 for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V), respectively, and the prepared adsorbent could be reused more than 100 times. In order to validate the developed method, two certified reference materials of GSBZ50009-88 and GSBZ 50029-94 environmental waters were analysed and the determined values were in good agreement with the certified values. The developed method has been applied to the determination of trace elements in environmental water samples with satisfactory results.  相似文献   

2.
《Analytical letters》2012,45(7):1210-1223
A new magnetic adsorbent, 2,2′-thiodiethanethiol grafted with tetraethyl orthosilicate modified Fe3O4 nanoparticles, was developed for the separation and preconcentration of Hg, Pb, and Cd in environmental and food samples. The concentrations of Pb and Cd were determined by inductively coupled plasma–optical emission spectrometry; Hg was determined by cold vapor atomic absorption spectrometry. A comprehensive study on the factors affecting the extraction and desorption efficiencies was performed. Under the optimized conditions, the method was linear in the 0.01–750 ng mL?1 range (before preconcentration) with detection limits of 4, 8, and 2 ng L?1 for Hg, Pb, and Cd, respectively. Relative standard deviations of 2.3, 2.9, and 2.4% (concentration 50 ng mL?1, n = 7) and high preconcentration factors of 291, 285, and 288 were also obtained for Hg, Pb, and Cd. The accuracy of the proposed method was validated by analyzing a water certified reference material with satisfactory recoveries. The method was successfully applied to the determination of the analytes in tap and mineral waters and canned tuna fish samples.  相似文献   

3.
The use of iron oxide/amino-functionalized silica core–shell magnetic nanoparticles for preconcentration of Pb2+ followed by its consecutive atomic absorption spectrometry determination is described. Effects of various operating variables, namely, solution pH, initial Pb2+ concentration, contact time, adsorbent dosage, sample volume, concentration and volume of desorbing solution, and co-existing ions on solid-phase extraction (SPE) of Pb2+ were studied by batch equilibrium technique. The experimental adsorption data were well fitted to the Langmuir isotherm model. The Langmuir adsorption capacity and equilibrium time were found to be 100 mg g?1 and 20 min, respectively. The adsorption data were also fitted to kinetic pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed pseudo-second-order model. Under the optimal SPE conditions, the enrichment factor, detection limit and relative standard deviation for determination of Pb2+ were found to be 211, 1 μg L?1, and 3.7 % for 50 μg L?1, respectively. The proposed method was successfully applied to the determination of lead in a real sample with satisfactory results.  相似文献   

4.
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Experimental conditions such as effects of pH, shaking time, sample flow rate and volume, elution and interfering ions were studied. The ions Au(III), Pd(II) and Pt(IV) can be quantitatively adsorbed on the new sorbent from solution of pH 1. The adsorbed ions were then eluted with 0.1 mol L?1 hydrochloric acid and containing 4% thiourea. Many common ions do not interfere. The adsorption capacity of the material is 305, 92, and 126 mg g?1 for Au(III), Pd(II) and Pt(IV), respectively, and the detection limits are 5, 11 and 9 ng mL?1. The relative standard deviation is less than 3.0% (n?=?8) under optimum conditions. The method was validated by analyzing two certified reference materials and successfully applied to the preconcentration and determination of these ions in actual samples with satisfactory results.
Figure
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Parameters affecting solid-phase extraction were systematically studied. This new adsorbent exhibited good characteristics for separation and preconcentration of Au(III), Pd(II) and Pt(IV) in aqueous solution, such as excellent selectivity, fast adsorption equilibrium, high tolerance limits of potentially interfering ions, high enrichment factor and low costs. It also shows relatively high adsorption capacity when compared to several other adsorbents. In addition, the synthetic method of the adsorbent was very simple.  相似文献   

5.
Polystyrene (PS) was extracted from styrofoam waste and functionalised with schiff base, N,N-bis(salicylidene)cyclohexanediamine (SCHD) through an azo spacer. The resin was characterised and used for preconcentration of Pb(II), Ni(II) and Cd(II) ions prior to their trace determinations by microsample injection system–coupled flame atomic absorption spectrometry (MIS-FAAS). The recoveries of studied metal ions were achieved ≥96.0% with relative standard deviation (RSD) ≤4.5 at optimum parameters: pH 8; resin amount 300 mg; flow rates 3.0 mL min?1 of sample solution; and 2.0 mL min?1 of eluent (2.0 mol L?1 HNO3). The limits of detection (LODs) and limits of quantification (LOQs) were found to be 0.32, 0.23 and 0.21 and 1.10, 0.78 and 0.69 μg L?1, respectively, with preconcentration factors (PFs) of 500, 800 and 1000, respectively. The linear ranges of the method were 1–40, 1–25 and 1–20 μg L?1 for Pb(II), Ni(II) and Cd(II) ions, respectively. The accuracy and validation of the method were evaluated by analysis of certified reference materials (CRMs). The method was successfully applied for preconcentration of studied metal ions in wastewater and wastewater-irrigated vegetable samples.  相似文献   

6.
A solid phase extraction method based on graphene oxide (GO) modified with magnesium oxide (MgO) nanoparticles was developed for the preconcentration and determination of trace amounts of cadmium, copper and nickel ions. The adsorbed analytes were eluted by 4.0 mL of 0.1 M (EDTA) and injected to flame atomic absorption spectrometer. The factors influencing the complex formation and extraction of these heavy metals were optimized. Studies on potential interference by various anions and cations showed the method to be highly selective. The preconcentration factor was about 11 with relative standard deviation of <4.0 for 8 replication determination. The detection limits for the Cd, Cu, Ni were found to be 0.5, 3.4 and 25 µg L?1, respectively. The method was successfully applied for the determination of cadmium, copper and nickel in tap water, well water, sea water, rice and macaroni samples with spike recoveries ranging 93–105 %.  相似文献   

7.
A new magnetic adsorbent, 3-mercaptopropionic acid coated 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticle, was synthesised and used for the extraction and preconcentration of arsenic ions in aqueous solutions followed by electrothermal atomic absorption spectrometric determination. The adsorbent was characterised by TEM, SEM, XRD and FT-IR techniques and the method used the unique properties of magnetic nanoparticles, namely, high surface area and superparamagnetism which gave it the advantages of high extraction capacity, fast separation and low adsorbent consumption. Different parameters affecting extraction efficiency of the analyte including pH value, sample volume, adsorbent amount, extraction time and desorption conditions were investigated and optimised. Under the optimum conditions, wide linear range of 30–25,000 ng L?1 and low detection limit of 10 ng L?1 were obtained. The interday and intraday precisions (as RSD%) for five replicates determination of 50 and 25,000 ng L?1 of arsenic ions were in the range of 2.3–3.2%. Furthermore, no significant interference was observed in the presence of coexisting ions and high preconcentration factor of 198 was obtained. The adsorption isotherm followed Langmuir model and its kinetic was second-order. The accuracy of the method was validated by analysing certi?ed reference materials for water and rice with satisfactory recoveries. Finally, the proposed method was successfully applied for the determination of ultra-trace amounts of arsenic in rice and water samples.  相似文献   

8.
A simple and automated method involving in-capillary derivatization and in-capillary preconcentration was developed for the simultaneous determination of metal ions by capillary zone electrophoresis. Fe(II), Zn(II), Cu(II) and Cd(II) were derivatized using 1,10-phenanthroline as the derivatizing agent. The in-capillary derivatization and in-capillary preconcentration via large volume injection were performed sequentially as follows: 60 mmol L?1 1,10-phenanthroline was first hydrodynamically injected (0.2 psi) for 2 s; metal ions were introduced by hydrodynamic injection (0.5 psi) for 60 s; 0.2 mol L?1 acetate pH 5.5 containing 20 % methanol was used as the running buffer. Four metal ions can be determined within 8 min using 16 kV. The resulting preconcentration factors were in the range 12–21. Good linearity was obtained for concentrations of 0.1–8.0 mg L?1 (r 2 > 0.990). The mean recoveries of the metal ions evaluated by fortification of wine samples were in the range 90–102 %. The limits of detection ranged from 0.05 to 0.2 mg L?1. The proposed method can be applied for directly determining metal ions in wine samples.  相似文献   

9.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

10.
Cloud point extraction (CPE) and solid phase extraction (SPE) methods were developed for the determination of ??g l?1 of vanadium ions in surface, tap and bottled mineral water samples, based on the rapid reaction of vanadium(V) with 8- hydroxyquinoline (8-quinolinol) at pH 3?C5. Both the sensitive extraction methods were successfully employed for the preconcentration of V in real samples. For CPE, V complexed with 8-quinolinol and then was entrapped in non-ionic surfactant Triton X-114, while for SPE, V was adsorbed on XAD -2 impregnated with 8-quinolinol. The experimental conditions for SPE (pH, eluent, and contact time between the liquid sample and the resin) and CPE (pH of sample solution, concentration of 8- quinolinol and Triton X-114, equilibration temperature and time period for shaking) were investigated in detail. The validity of SPE/CPE of V was checked by certified reference material of water (SRM-1643e). The extracted surfactant-rich phase (200 ??l) was mixed with 200 ??l of HNO3 in ethanol and this final volume was injected into electrothermal atomic absorption spectrometry with different modifiers. Under these conditions, the preconcentration of 25 ml sample solution allowed the raising of an enrichment factor of 100 and 10 folds for CPE and SPE, respectively. The concentration of V in surface water (river and lake), tap water and bottled mineral water samples was found to be in the range of 1.30?C19.9, 1.05?C5.25 and 0.67?C1.21 ??g l?1, respectively.  相似文献   

11.
In this study, an ion imprinted polymer (IIP) was prepared for the selective separation and preconcentration of trace levels of aluminum. Al(III) IIP was synthesized in the presence of Al(III)-8-hydroxyquinoline (oxine) complex using styrene and ethylene glycol dimethacrylate as a monomer and crosslinker, respectively. The imprinted Al(III) ions were completely removed by leaching the IIP with HCl (50 % v/v) and were characterized by FTIR and scanning electron microscopy. The maximum sorption capacity for Al(III) ions was found to be 3.1 mg g?1 at pH 6.0. Variables affecting the IIP solid phase extraction were optimized by the univariable method. Under the optimized conditions, a sample volume of 400 mL resulted in an enhancement factor of 194. The detection limit (defined as 3 S b/m) was found to be 1.6 μg L?1. The method was successfully applied to the determination of aluminum in natural water, fruit juice and cow milk samples.  相似文献   

12.
《Analytical letters》2012,45(14):2417-2430
Diethyldithiocarbamate and 2-mercaptoethanol modifiers were compared for the preconcentration of mercury species in water by C18 solid phase extraction (SPE). The recovery values of mercury species were determined by high performance liquid chromatography–atomic fluorescence spectrometry. The eluent type, pH, chloride ion concentration, humic acid concentration, and storage time were evaluated to compare the preconcentration efficiency. L-cysteine was employed to elute the mercury compounds. Less eluent was needed for 2-mercaptoethanol modified SPE than for diethyldithiocarbamate modified SPE at an L-cysteine concentration of 0.12%. Diethyldithiocarbamate modified SPE could be used over a wider pH range and higher humic acid concentrations, whereas 2-mercaptoethanol modified SPE was less affected by the chloride concentration. Both modified SPE systems stored mercury species for 5 days, but diethyldithiocarbamate modified SPE could be stored longer. Diethyldithiocarbamate SPE provided limits of detections of 3.5, 2.5, and 4 ng · L?1 and average recoveries of 90.78 ± 3.37%, 96.79 ± 5.12%, and 84.88 ± 5.37% for mercury(II), methylmercury, and ethylmercury, respectively. The relative standard deviation was less 6.5%. For 2-mercaptoethanol modified SPE, the limits of detection were 1.4, 1, and 1.6 ng · L?1 and the recoveries were of 87.66 ± 8.45%, 86.70 ± 2.61%, and 91.31 ± 6.98% for mercury(II), methylmercury, and ethylmercury, respectively, with a relative standard deviation below 9.7%. Water should be characterized for its physical and chemical characteristics before mercury preconcentration to choose the most suitable method.  相似文献   

13.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

14.
A new solid-phase extraction method utilising polyacrylonitrile activated carbon fibres (PAN-ACFs) as adsorbent was developed for the preconcentration of trace metal ions prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The PAN-ACFs oxidised with nitric acid were characterised by FT-IR, XRD, SEM and BET analysis. Then the resulting PAN-ACFs were used as solid-phase adsorbent for simultaneously determination of trace Al(III), Be(II), Bi(III), Cr(III), Cu(II), Fe(III) and Pb(II) ions in aqueous solutions. The influences of the analytical parameters on the recoveries of the studied ions were investigated. The optimum experimental conditions of the proposed method were pH: 6.0; eluent concentration and volume: 3.0 mL of 1.5 mol L?1 nitric acid; flow rates of sample and eluent solution: 1.5 mL min?1. The preconcentration factors were found to be 67 for Al(III), Bi(III); 83 for Cr(III), Cu(II), Fe(III) and 50 for Be(II), Pb(II). The precision of this method was in range of 1.5%~3.5% and the detection limit of this metal ions was between 0.06~1.50 μg L?1. The developed method was validated by the analysis of a certified reference sample and successfully applied to the determination of trace metal ions in water samples with satisfactory results.  相似文献   

15.
Diphenyl diselenide was immobilized on chitosan loaded with magnetite (Fe3O4) nanoparticles to give an efficient and cost-effective nanosorbent for the preconcentration of Pb(II), Cd(II), Ni(II) and Cu(II) ions by using effervescent salt-assisted dispersive magnetic micro solid-phase extraction (EA-DM-μSPE). The metal ions were desorbed from the sorbent with 3M nitric acid and then quantified via microflame AAS. The main parameters affecting the extraction were optimized using a one-at-a-time method. Under optimum condition, the limits of detection, linear dynamic ranges, and relative standard deviations (for n?=?3) are as following: Pb(II): 2.0 ng·mL?1; 6.3–900 ng·mL?1; 1.5%. Cd(II): 0.15 ng·mL?1; 0.7–85 ng·mL?1, 3.2%; Ni(II): 1.6 ng·mL?1,.6.0–600. ng·mL?1, 4.1%; Cu(II): 1.2 ng·mL?1, 3.0–300 ng·mL?1, 2.2%. The nanosorbent can be reused at least 4 times.
Graphical abstract Fe3O4-chitosan composite was modified with diphenyl diselenide as a sorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction.
  相似文献   

16.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

17.
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and of other ions were studied. Under optimized conditions, the extraction efficiency is >97 %, and the limits of detection are 0.025, 0.15, 0.5 and 1.2 ng mL?1 for the ions of cadmium, copper, nickel, and lead, respectively, and the adsorption capacities for these ions are 101, 81, 74 and 178 mg g?1. The modified np-F sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements.
Figure
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). This SPE technique was successfully applied for separation, determination, and preconcentration of cadmium, copper, nickel and lead in biological, food and environmental water samples  相似文献   

18.
Oxine (8-hydroxyquinoline) was used as an efficient and selective ligand for stripping voltammetry trace determination of Mn(II). A validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn(II) selectively as oxine complex using both the bare carbon paste electrode (CPE) and the modified CPE with 7 % (w/w) montmorillonite-Na clay. Modification of carbon paste with montmorillonite clay was found to greatly enhance its adsorption capacity. Limits of detection of 45 ng l?1 (8.19?×?10?10 mol L?1) and 1.8 ng l?1 (3.28?×?10?11 mol L?1) Mn(II) were achieved using the bare and modified CP electrodes, respectively. The achieved limits of detection of Mn(II) as oxine complex using the modified CPE are much sensitive than the detection limits obtained by most of the reported electrochemical methods. The developed stripping voltammetry method using both electrodes was successfully applied for trace determination of Mn(II) in various water samples without interferences from various organic and inorganic species.  相似文献   

19.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

20.
A flow-injection system with on-line ion-exchange preconcentration on dual columns is described for the determination of trace amounts of heavy metals at μg l?1 and sub-μg l?1 levels by flame atomic absorption spectrometry. The degree of preconcentration ranges from 50- to 105-fold for different elements at a sampling frequency of 60 s h?1. The detection limits for Cu, Zn, Pb and Cd are 0.07, 0.03, 0.5, and 0.05 μg l?1, respectively. Relative standard deviations were 1.2–3.2% at μg l?1 levels. The behaviour of the different chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号