首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 μg L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water.
Figure
In the present work, polythiophene-coated Fe3O4 nanoparticles have been successfully synthesized and were applied as adsorbent for magnetic solid-phase extraction of some precious metal ions.  相似文献   

2.
Reversed phase liquid chromatography using UV detection was developed for the simultaneous analysis of Hg(II), Pb(II), Cd(II), Ni(II), Fe(III) and V(V) ions after their complexation with pyrrolidine-dithiocarbamate (PDC). Optimum chromatographic conditions were a μ-Bondapak C18 column and an isocratic mobile phase consisting of 40 mmol L?1 SDS, 34 mmol L?1 TBABr and 68% acetonitrile in 10 mmol L?1 phosphate buffer pH 3.5. The separation of six PDC complexes was achieved within 8 min. Analytical performances and method validation were investigated. The detection limits ranged from 0.16 μg L?1(Fe(III)) to 5.40 μg L?1(Pb(II)). Recoveries obtained for all the studied samples including tap water, whole blood and vegetables were 72–98%. The results obtained from the proposed method were not significantly different compared to those obtained from atomic absorption spectrometry (P = 0.05).  相似文献   

3.
A procedure for the pre-concentration of Cu(II), Fe(III), Mn(II) and Zn(II) is described utilising a minicolumn of natural cellulose (almond bark) modified with fungus (Rhizopus oryzae) prior to their determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The optimum pre-concentration conditions such as pH and flow rate for the analytes have been investigated. The analytes were quantitatively retained on the column between pH 6 and 8. Elution was made with 10 mL 1 M HCl solution. Under the optimum conditions, recoveries were found as 97 ± 3%, 96 ± 3%, 98 ± 3% and 94 ± 2% for Cu(II), Fe(III), Mn(II) and Zn(II), respectively, at 95% confidence level. The detection limits obtained from preconcentration of 50 mL of blank solutions (n = 11) were 1.6, 1.8, 2.8 and 1.2 µg L?1 for Cu(II), Fe(III), Mn(II) and Zn(II), respectively. Relative standard deviations (RSD) of the recoveries for five replicate analyses were lower than 3%. The proposed method was validated by analysing certified reference materials (Peach Leaves SRM 1547 and Fish Tissue IAEA-407). Determination of the Cu(II), Fe(III), Mn(II) and Zn(II) in K?z?l?rmak River water, green beans, beans leave and tomato leaves and fish (Tinca tinca) tissue samples was performed by the proposed method.  相似文献   

4.
The redox behaviors of Fe(II/III) and U(IV/VI) in both synthetic samples and natural groundwater were investigated with potentiometry, UV/VIS absorption spectroscopy, and time-resolved laser fluorescence spectroscopy. Total dissolved Fe(II/III) concentration along with presence of mixed redox couples of Fe2+/Fe3+ and Fe2+/Fe2O3(s) were revealed to be the major factors influencing on the redox potentials. Considerable discrepancies between redox potentials obtained with quantitative analysis and chemical speciation of Fe(II/III) and U(IV/VI) ions were identified in the KAERI Underground Research Tunnel groundwater. Chemical speciation of U(IV) in natural groundwater without considering relevant complexation reaction might cause relatively large uncertainties in redox potential calculations.  相似文献   

5.
《Analytical letters》2012,45(14):2621-2633
Abstract

A sensitive and selective voltammetric method for determination of antimony(III) using Alizarin Red S (ARS) as complexing agent is described. The method is based on the monitoring the oxidation peak of antimony(III)-ARS complex at ?520 mV in ammonium-ammonia buffer (pH = 7.5). The peak current was measured by scanning the potential from ?700 mV versus Ag/AgClto more positive potentials without accumulation in the presence of 1 × 10?6 mol L?1 of ARS. The limit of detection (3 s) and limit of quantification (10 s) of the method were calculated from calibration curve as 1.45 µg L? and 4.8 µg L? respectively. The calibration plot for antimony(III) was linear in the range of 4.8–30 µg L?. The interference of various ions was examined. Serious interference from Al(III), Fe(III), Cu(II), Pb(II), and Zn(II) was eliminated by addition of EDTA to the solution. The method was applied to drinking water samples. The recoveries were in the range 94% – 105%. The results obtained from the developed method were compared with those from the differential-pulse anodic-stripping method and no statistically significant difference was found.  相似文献   

6.
New schemes of arsenic speciation by anodic stripping voltammetry are developed at neutral pH based on the difference in electrochemical behaviour of the As(III) and As(V) forms. Detection is performed in sulphite medium (0.1 M Na2SO3) in the presence of Mn(II) (10?6 M), which is known to catalyse the reduction of As(V), making it detectable by ASV. Two speciation schemes are proposed. If As(III) > As(V), then As(III) and total As(III) + As(V) are determined in separate voltammetric cells after oxidation of As(III) to As(V) (5 min ozone purging), similar to previous studies. However, when As(V) > As(III), both As(III) and As(V) can be determined consecutively, within the same cell. In this case, two simple variants were successfully tested, depending on the size of the As(III) peak in comparison to the linearity range. The working electrode is an ensemble of gold microelectrodes obtained by HAuCl4 electrolysis at a carbon black–polyethylene composite (ratio 30:70). No purging is required, the electrode is sensitive, robust and has a long lifetime. Calculated LODs of As(III) and As(V) are 0.09 μg L?1 and 0.35 μg L?1, respectively (3σ, tdep = 20 s). The proposed procedures are fast, simple and environmental-friendly.  相似文献   

7.
The present paper describes the feasibility of on-line preconcentration of nickel ions from aqueous medium on Ni(II)-imprinted cross-linked poly(methacrylic acid) (IIP) synthesised through a double-imprinting method and their subsequent determination by FAAS. The proposed method consisted in loading the sample (20.0 mL, pH 7.25) through a mini-column packed with 50 mg of the IIP for 2 min. The elution step was performed with 1.0 mol L?1 HNO3 at a flow rate of 7.0 mL min?1. The following parameters were obtained: quantification limit (QL) – 3.74 µg L?1, preconcentration factor (PF) – 36, consumption index (CI) – 0.55 mL, concentration efficiency (CE) – 18 min?1, and sample throughput – 25 h?1. The precision of the procedure assessed in terms of repeatability for ten determinations was 5.6% and 2.5% for respective concentrations of 5.0 and 110.0 µg L?1. Moreover, the analytical curve was obtained in the range of 5.0–180.0 µg L?1 (r = 0.9973), and a 1.64-fold increase in the method sensitivity was observed when compared with the analytical curve constructed for the NIP (non-imprinted polymer), thus suggesting a synergistic effect of the Ni(II) ions and CTAB on the adsorption properties of the IIP. The practical application of the adsorbent was evaluated from an analysis of tap, mineral, lake and river water. Considering the results of addition and recovery experiments (90.2–100 %), the efficiency of this adsorbent can be ensured for the interference-free preconcentration of the Ni(II) ions.  相似文献   

8.
A new method for solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed using 1,5-diphenylcarbazide doped magnetic Fe3O4 nanoparticles as extractant. The surface treatment did not result in the phase change of Fe3O4. Various factors which influenced the recovery of the analyte were investigated using model solutions and batch equilibrium technique. The maximum adsorption occurred at pH?>?6, and equilibrium was achieved within 5 min. Without filtration or centrifugation, these mercury loaded nanoparticles could be separated easily from the aqueous solution by simply applying an external magnetic field. At optimal conditions, the maximum adsorption capacity was 220 μmol g?1. The mercury ions can be eluted from the composite magnetic particles using 0.5 mol L?1 HNO3 as a desorption reagent. The detection limit of the method (3σ) was 0.16 μg L?1 for cold vapor atomic absorption spectrometry, and the relative standard deviation was 2.2%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The method was applied to the preconcentration and determination of trace inorganic mercury(II) in natural water and plant samples with satisfactory results.  相似文献   

9.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

10.
The dark reduction kinetics of micromolar concentrations of Fe(III) in aqueous solution were studied in the presence of millimolar concentrations of ferrozine (FZ) over the pH range 4.0–7.0. A pseudo-first-order kinetics model was used to describe Fe(III) reduction at pH 4.0 and 5.0, and the reduction rate decreased with increasing pH or initial Fe(III) concentration. A more molecular-based kinetics model was developed to describe Fe(III) reduction at pH 6.0 and 7.0. From this model, the intrinsic rate constants (k1) of Fe(III) reduction by FZ in the dark were obtained as 0.133 ± 0.004 M?1 s?1 at pH 6.0 and 0.101 ± 0.009 M?1 s?1 at pH 7.0. It was also found in this model that a higher pH, a higher concentration of Fe(III), a lower concentration of FZ and less incubation time led to a lower fraction of Fe(III) reduction by FZ in the dark.  相似文献   

11.
An amino acid derived ionic liquid, Fe3O4 nanoparticles and graphene oxide (GO) were used to prepare a material for the magnetic solid phase extraction (MSPE) of the ions Al(III), Cr(III), Cu(II) and Pb(II). The material was characterized by Fourier transform infrared spectral (FT-IR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), magnetic analysis and isoelectric point (pI) analysis. It is shown to be a viable sorbent for the separation of these metal ions. Single factor experiments were carried out to optimize adsorption including pH values, ionic strength, temperature and solution volume. Following desorption with 0.1 M HCl, the ions were quantified by inductively coupled plasma optical emission spectrometry. Under the optimum conditions, the method provides a linear range from 10 to 170 μg· L?1 for Al(III); from 4.0 to 200 μg· L?1 for Cr(III); from 5.0 to 170 μg· L?1 for Cu(II); and from 5.0 to 200 μg· L?1 for Pb(II). The limits of detection (LOD) are 6.2 ng L?1 for Al(III); 1.6 ng L?1 for Cr(III); 0.52 ng L?1 for Cu(II); and 30 ng L?1 for Pb(II). Method performance was investigated by determination of these ions in (spiked) environmental water and gave recoveries in the range of 89.1%–117.8%.
Graphical abstract The graph shows that Al(III), Cr(III), Cu(II), Pb(II) are not adsorbed quantitatively by Fe3O4-SiO2. On the other hand, Cr(III) and Pb(II) are adsorbed quantitatively by Fe3O4-SiO2-GO while Al(III) and Cu(II) are not quantitatively retained. However, 3D–Fe3O4-SiO2-GO-AAIL adsorb all these 4 metal ions quantitatively.
  相似文献   

12.
A selective, simple and fast dispersive micro solid phase extraction method using magnetic graphene oxide (GO) as an efficient sorbent has been developed for the extraction, separation and speciation analysis of chromium ions. The method is based on different adsorption behaviour of Cr(VI) and Cr(III) species onto magnetic GO in aqueous solutions which allowed the selective separation and extraction of Cr(VI) in the pH range of 2.0–3.0. The retained Cr(VI) ions by the sorbent were eluted using 0.5 mL of 0.5 mol L?1 nitric acid solution in methanol and determined by ?ame atomic absorption spectrometry. Total chromium content was determined after the oxidation of Cr(III) to Cr(VI) by potassium permanganate. All effective parameters on the performance of the extraction process were thoroughly investigated and optimised. Under the optimised conditions, the method exhibited a linear dynamic range of 0.5–50.0 µg L?1 with a detection limit of 0.1 µg L?1 and pre-concentration factor of 200. The relative standard deviations of 3.8% and 4.6% (n = 8) were obtained at 25.0 µg L?1 level of Cr(VI) for intra- and inter-day analysis, respectively. The method was successfully applied to the speciation and determination of Cr(VI) and Cr(III) in environmental water samples.  相似文献   

13.
4-hydroxy-3,5-pyridinedicarboxylic acid (DQ58) and 4-hydroxy-1-methyl-3,5-pyridinedicarboxylic acid (DQ71508) have been synthesized, and their Fe(III), Al(III), Cu(II), and Zn(II) coordination properties have been studied by potentiometry, UV–Vis spectroscopy (in the case of Fe(III), Al(III), Cu(II)), 1H-NMR (for Al(III)) and EPR (for Cu(II)). The thermodynamic results were used to model the extent of the toxic metal ions decorporation (Fe(III) or Al(III)) in the presence of the essential metal ions (Cu(II) or Zn(II)). DQ58 and DQ71508 were demonstrated to interact with human serum albumin (HSA), which is assumed to be the main serum transporter of the chelators, and binding constants have been obtained by ultrafiltration. IC50 values of 5.185 × 10?3 and 1.033 × 10?3 mol·L?1 were collected after 24 and 48 h of treatment with DQ71508 towards human embryonic kidney HEK-293 cells, demonstrating the relatively low cytotoxicity of this compound. According to these results, both DQ58 and DQ71508 seem to be potential candidates for Fe chelation therapy, and DQ58 is a better Fe(III) chelator than DQ71508.  相似文献   

14.
A separation/preconcentration procedure based on the coprecipitation of Pb(II), Fe(III), Co(II), Cr(III) and Zn(II) ions with copper(II)-N-benzoyl-N-phenyl-hydroxylamine complex (Cu-BPHA) has been developed. The analytical variables including pH, amount of BPHA, amount of copper(II) as carrier element, and sample volume were investigated for the quantitative recoveries of the elements. No interfering effects were observed from the concomitant ions when present in real samples. The recoveries of the analyte ions were in the range of 95–100%. The detection limits (3 s) for Pb(II), Co(II), Fe(III), Cr(III) and Zn(II) ions were found to be 2.3, 0.7, 0.7, 0.3 and 0.4 µg L?1, respectively. The validation of the procedure was performed by the analysis of CRM (SRM NIST-1547 peach leaves and LGC6019 river water) standard reference materials. The method was applied to the determination of the analytes in real samples including natural waters, hair, urine, soil, sediment and peritoneal fluids samples etc., and good results were obtained (relative standard deviations <4%, recoveries >95%).  相似文献   

15.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

16.
《Analytical letters》2012,45(16):2593-2605
A method was developed for the determination of vitamin B12 based on the enhancement of cobalt (II) on the chemiluminescence (CL) reaction between luminol and percarbonate (powerful source of hydrogen peroxide). The release of cobalt (II) from the vitamin B12 was reached by a simple and fast microwave digestion (20 s microwave digestion time and a mix of nitric acid and hydrogen peroxide). A charge coupled device (CCD) photodetector, directly connected to the cell, coupled with a simple continuous flow system was used to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction.

The optima experimental conditions were established: 8.0 m mol L?1 luminol in a 0.075 mol L?1 carbonate buffer (pH 10.0) and 0.15 mol L?1 sodium percarbonate, in addition to others experimental parameters as 0.33 mL s?1 flow rate and 2 s integration time, were the experimental conditions which proportionate the optimum CL emission intensity. The emission data were best fitted with a second-order calibration graph over the cobalt (II) concentration range from 4.00 to 300 µ g L?1 (r2 = 0.9990), with a detection limit of 0.42 µ g L?1. The proposed method was successfully applied to the determination of vitamin B12 in pharmaceuticals.  相似文献   

17.
《Analytical letters》2012,45(18):2921-2935
Speciation of Sb(III) and Sb(V) was investigated using hydride generation with the selective formation of stibine from Sb(III). A continuous flow system using a homemade gas-liquid separator with inductively coupled plasma optical emission spectrometry was employed. The conditions and concentrations of NaBH4, HCl, citric acid, and KI were optimized to obtain limits of detection of 0.05 for Sb(III) and 0.11 µg L?1 for total Sb without preconcentration. An attractive sampling rate of 26 analyses h?1 was obtained, suggesting application for routine analysis. The method was employed for the determination of Sb(III) and total Sb in bottled drinking water, and recovery values between 82.0 and 98.8% with relative standard deviation lower than 6.2% were observed, demonstrating appropriate accuracy and precision.  相似文献   

18.
Dithiocarbamate modified polyurethane foam (DTC-PUF) was synthesized as a new solid-phase extraction sorbent for the preconcentration and determination of Fe(II), Mn(II) and Cu(II) in environmental samples using flame atomic absorption spectrometry. Maximum extraction of the elements was achieved at pH 5–7 and flow rate 3 mL min?1. Quantitative desorption was achieved by 10 mL from 1.0 mol L?1 HCl solution. The capacity of the sorbent was 149.2 ± 0.5, 237.5 ± 0.2, 200.2 ± 0.1 μg g?1 and the limit of detection was of 0.015, 0.015 and 0.012 μg mL?1for Fe(II), Mn(II) and Cu(II), respectively. A preconcentration factor of 100 was obtained for all elements. The developed method was successfully applied to the determination of the tested elements in water (tap and lake) and plant (spinach and parsley leaves) samples and showed good recovery values from 98 to 111% with corresponding RSD values ranged from 0.6 to 8.6%.  相似文献   

19.
《Analytical letters》2012,45(6):1209-1226
Abstract

A sensitive method for the simultaneous spectrophotometric determination of Fe(II), Cu(II), Zn(II), and Mn(II) in mixtures has been developed with the aid of multivariate calibration methods, such as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS). The method is based on the spectral differences of the analytes in their complexation reaction with 4‐(2‐pyridylazo)‐resorcinol (PAR) and the use of full spectra with wavelengths in the range of 300–600 nm. It was found that both the spectral positive and negative bands obtained against the PAR blank, are proportional to the concentration for each metal complex. The obtained linear calibration concentration ranges are 0.025–0.6, 0.05–0.8, 0.025–0.8, and 0.05–0.8 µg ml?1 for Fe(II), Cu(II), Zn(II), and Mn(II), respectively, and the LODs for the four metal ions were found to be approximately 1–3×10?2 µg ml?1. The proposed method was applied to a verification set of synthetic mixtures of these four metal ions, with models built in three different wavelength ranges, i.e., 300–450, 450–600, and 300–600 nm, corresponding to the positive, negative bands and their combinations, respectively. It was shown that the PLS model for the 300–600 nm range gave the best results (RPET=6.9% and average recovery ~100%; cf. PCR: RPET=9.5% and average Recovery ~110%). This method was also successfully applied for the determination of the four metal ions in pharmaceutical preparations, chicken feedstuff, and water samples.  相似文献   

20.
Recently, MoS2 with abundant electron density in its structure attracted more attention as an adsorbent for environmental remediation. However, hard manipulation of target solution owing to high dispersibility in aqueous media restricts its application as adsorbent. Preparation of Fe3O4/MoS2 nanohybrid can solve this problem. Also, this nanohybrid improves adsorption capacities of target ions. In this work, Fe3O4 nanoparticles, MoS2 nanosheets and hybrid of these two were synthesised and then characterised by X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared spectra, Brunauer–Emmett–Teller surface area and vibrating sample magnetometer. Subsequently, adsorption of Ag(I) and Pb(II) ions from aqueous solution by these three adsorbents was examined in detail and compared with each other while the adsorption conditions including the pH value, contact time, dosage of sorbent, elution conditions and interfering ions have been optimised. According to obtained results, prepared nanohybrid showed enhanced adsorption capacities for both ions relative to naked Fe3O4 and MoS2. The limits of detection for Ag(I) and Pb(II) were calculated as 0.49 µg L?1 and 2.7 µg L?1, respectively, and the relative standard deviation percentages (n = 5) for Ag(I) and Pb(II) were 2.8%, and 3.0%, respectively. Furthermore, the preconcentration factors were 300 and 75 for Ag(I) and Pb(II) ions, respectively. Moreover, kinetic studies showed that pseudo-second-order model can better describe target analytes adsorption properties by every three adsorbents. Regeneration of the adsorbents was performed with HCl/thiourea mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号