首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The investigation of air pollution is a highly important field of research. Air quality in a vehicle’s interior has attracted growing attention since people spend much of their time in vehicles and those frequently travelling in new cars are exposed to harmful compounds. The main air pollutants inside new vehicles are volatile organic compounds (VOCs), present as a result of interior materials’ de-gassing. Among the sampling methods used in indoor air quality research, active sampling for VOCs collection is one method that has been extensively described and applied. The present study sought to implement passive sampling with Radiello® samplers to collect air samples directly in the car factory. The results from passive sampling were compared with results derived from active sampling using Carbograph 1TD and silicagel coated with 2,4-dinitrophenylhydrazine cartridges, based on previously validated methods. The identification and quantification of organic compounds was performed using gas chromatography with flame ionisation coupled with a mass spectrometer after thermal desorption. Aldehydes were determined by means of high-performance liquid chromatography. In the present study, the results obtained with the use of active and passive methods of air sampling were compared, correlations between the two sampling methods were designated and the repeatability of passive sampling was detailed.  相似文献   

2.
Furan may be formed in food under heat treatment and is highly suspected to appear in indoor air. The possible exposure to indoor furan raises concerns because it has been found to cause carcinogenicity and cytotoxicity in animals. To determine airborne furan, solid-phase microextraction (SPME) technique was utilised as a diffusive sampler. The Carboxen/Polydimethylsiloxane (CAR/PDMS, 75 μm) fibre was used, and the SPME fibre assembly was inserted into a polytetrafluoroethene tubing. Furan of known concentrations was generated in Tedlar gas bags for the evaluation of SPME diffusive samplers. After sampling, the sampler was inserted into the injection port of a gas chromatograph coupled with a mass spectrometer (GC/MS) for thermal desorption and analysis. Validation of the SPME device with active sampling by charcoal tube was performed side by side as well. The charcoal tube was desorbed by acetone before analysis with GC/MS. The experimental sampling constant of the sampler was found equal to (9.93 ± 1.28) × 10?3 (cm3 min?1) at 25°C. Furthermore, side-by-side validations between SPME device and charcoal tube showed linear relationship with r = 0.9927. The designed passive sampling device for furan has the advantages of both passive sampling and SPME technique and looks suitable for assessing indoor air quality.  相似文献   

3.
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar® bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) from ambient air particulate matter (PM) were analysed by a two-step thermal desorption (TD) injection system integrated to a gas chromatograph–mass spectrometer (GC/MS). The operational variables of the TD method were optimised and the analytical expanded uncertainties were calculated to vary from 8% to 16% over the operative concentration range (40–4000 pg). The performance of the TD method was validated by the analysis of a standard reference material and by comparison of PAH concentrations in PM samples to those obtained by a conventional liquid extraction (LE) method. The TD method reported lower uncertainties than the LE method for the analysis of similar concentrations in air. The TD method also showed advantages for shorter sampling times in comparison to 24 h for source apportionment applications and for reducing losses of more reactive compounds such as benzo[a]pyrene.  相似文献   

5.
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally.  相似文献   

6.
A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.  相似文献   

7.
In order to develop a valuable method for accurate screening of biogenic emissions from undisturbed living plants or for plant-insect interactions, solid-phase microextraction (SPME) has been combined with dynamic branch enclosure cuvettes and enantioselective GC/MS. The study was conducted at Hyyti?l? forest station, Finland within a boreal coniferous forest dominated by Scots pine (Pinus sylvestris). The SPME method was optimized for monoterpenes by testing three fibre coatings: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and carbowax/divinylbenzene (CW/DVB) and determining the optimum exposure time. The PDMS/DVB fibre was found to be most suitable and was used to characterize emissions of P. sylvestris enclosed in dynamic branch enclosure cuvettes by exposure for 1 min followed by desorption and separation on a beta-cyclodextrin column installed in the GC/MS oven. Dynamic cuvette measurements have been compared to static headspace SPME samples of the emission of detached needles from the same tree species and a portable dynamic air sampler (PDAS)-SPME for sampling the ambient air around the same trees. The method developed has allowed an accurate characterization of the gaseous emission of P. sylvestris and the identification of 17 isoprenoids comprising chiral and achiral monoterpenes. Two chemotypes of Scots pine can be differentiated through their emission of (+)-delta-3-carene. While SPME-dynamic cuvette, portable dynamic sampler and absorbent results agreed well, significant differences in enantiomeric ratios were observed in natural emissions and those of damaged leaves. Therefore, in enantioselective studies of plant-insect and/or plant-plant interactions, the two enantiomers of a given monoterpene should be treated as two separate substances.  相似文献   

8.
9.
A portable dynamic air sampler and solid phase microextraction were used to simultaneously detect, identify, and quantify airborne sarin with immediate analysis of samples using a field portable gas chromatography-mass spectrometry system. A mathematical model was used with knowledge of the mass of sarin trapped, linear air velocity past the exposed sampling fiber, and sample duration allowing calculation of concentration estimates. For organizations with suitable field portable instrumentation, these methods are potentially useful for rapid onsite detection and quantification of high concern analytes, either through direct environmental sampling or through sampling of air collected in bags.  相似文献   

10.
A multiresidue method for determining more than 70 pesticides in air has been validated using a single injection with gas chromatography/tandem mass spectrometry (GC/MS/MS). The method validation considered both stages of sampling and analysis. The sampling method, based on active sampling using sorption in sorbent cartidges, was validated by generating standard atmospheres. Performance parameters of the method were evaluated, with a reduction in the limits of quantification by injecting a higher volume of sample extract, and increase of selectivity by the use of MS/MS detection mode. The method was based on solid-phase extraction, which permits a degree of automation. The best adsorbents were found to be Chromosorb 106 and Tenax TA. The retention capacity of these sampling sorbents allows up to 1440 L of air to be sampled without any breakthrough for most of the compounds. Data were generated for assessing the potential exposure of bystanders. The application of the method to the analysis of the air in urban locations near agricultural areas showed that pesticides were present in most of the samples.  相似文献   

11.
Summary A diffusive sampler for the large scale routine determination of airborne formaldehyde was developed. Formaldehyde is sampled in a badge-type passive sampler containing a 2,4-dinitrophenylhydrazine-coated filter paper as sampling layer. Formaldehyde is immediately converted to the corresponding hydrazone, which, after desorption with acetonitrile, is separated and quantified by gradient HPLC using UV detection at 345 nm. Calibration was done via an active sampling method and showed an excellent, time- and concentration-independent linear performance of the diffusive samplers. A detection limit of about 0.05 ml/m3·h (ppm·h) and a relative standard deviation of about 10% ensured a good analytical reliability. By testing the influence of air movements at the sampler surface, a minimum air velocity of 10 cm/s was found necessary to ensure representative sampling.  相似文献   

12.
This study describes the development of an analytical method based on active collection in a multisorbent Tenax TA/Carbograph 1TD tube, followed by thermal desorption and GC‐MS for the determination of 16 volatile organic compounds in air samples. The analyzed compounds include ozone precursors and odor‐causing compounds belonging to different chemical families (sulfur‐ and nitrogen‐containing compounds, aldehydes, and terpenes). Two types of sorbents were tested and desorption conditions (temperature, time, and sampling, and desorption flow) were evaluated. External calibration was carried out using the multisorbent bed. Method detection limits in the range 0.2–2.0 μg m?3 for 1 L samples were obtained. The method was applied for determining the target compounds in air samples from two different wastewater treatment plants. Most compounds were detected and toluene, limonene, and nonanal were found in particularly high concentrations with maximum values of 438, 233, and 382 μg m?3, respectively.  相似文献   

13.
A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography–mass spectrometry (HS-GC–MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).  相似文献   

14.
A passive “badge-type” sampling device for the determination of gaseous ammonia was developed. The collection substrate is phosphoric acid. The sampler can be used for outdoor and indoor sampling of ammonia in the concentration range from 0.05 μg/m3 to 10 mg/m3. The performance was tested in the laboratory and in the field against an annualar denuder, a filter pack and an impinger technique. The intercalibration showed that the passive sampler compares very well with active samplers (r2=0.99; k=1.05). The average reproducibility of the sampler was 8%. Hence the badge sampler is well suited for the determination of ammonia in a wide range of concentrations and particularly for application under rural background conditions. The sampling rate of the device was calculated according to a simple multi-layer model.  相似文献   

15.
A multiresidue method for determining 22 polychlorinated biphenyls (PCBs) in air has been developed and validated by gas chromatography (GC) coupled to tandem mass spectrometry (MS/MS) using a triple quadrupole analyzer (QqQ). The method was validated in terms of both steps of sampling and analysis. The sampling method, which is based on active sampling using polyurethane foam (PUF) as adsorbent, was validated by generating standard atmospheres. The retention capacity of this sampling sorbent allows up to 5 m3 of air to be sampled without any breakthrough for most compounds. Two solvent extraction methods were compared: sonication and Soxhlet extraction with a mixture of n-hexane:diethyl ether (95:5 v/v). Both extraction methods yielded similar results, but the first one required less solvent and time. The method exhibited good accuracy (80.3–99.8%), precision (2.2–15.2%) and lower limits that allowed quantification and confirmation at levels as low as 0.008 ng/m3. Finally, the method was applied to the analysis of PCBs in the air in areas near to a municipal solid-waste landfill and directly above the refuse in the landfill, where it indicatedd the presence of some of the target compounds. Figure General chemical structure of polychlorinated biphenyls  相似文献   

16.
A simple, highly sensitive analytical method for measuring many kinds of carbonyls in air using a passive sampler containing a sorbent (silica gel) coated with 2,4-dinitrophenylhydrazine has been developed. The carbonyls collected by the sampler were extracted with a solvent, and the extracts were subjected to high-performance liquid chromatography (HPLC; UV detection) without first being concentrated. In this method, the volume injection is examined, and is found to have a sensitivity at least 20 times that of ordinary HPLC methods. The air concentrations of nine carbonyls collected by passive sampling over a period of 24?h were estimated by means of conversion equations derived from the results of active sampling;c?=?10[log ( y )??? b ] a , where c is the carbonyl concentration in air (µg/m3); y is the amount of carbonyl collected by the passive sampler (µg); and a and b are constants for each carbonyl compound. The calculated air concentrations were consistent with the concentrations measured by active sampling. This method may be useful in determining personal exposure to ambient carbonyls.  相似文献   

17.
The development and operational evaluation of a calibration gas generator for the analysis of volatile or ganic compounds (VOC) in air is described. Details of the construction, as well as of the evaluation of the apparatus are presented here. The performance of the test gas generator is validated both by on-line GC analysis of the calibration gas produced and by off-line analysis of adsorptive samples taken from the generated calibration gas. Both, active and passive sampling have been used, and the results demonstrate the excellent accuracy and precision of the generated test gas atmosphere: For the 11 investigated organic compounds (aromatic and halogenated compounds), the found values were in most cases within 5% of the target value with a reproducibility of better than 3% RSD (as determined by the analysis of the sampled adsorbent tubes). Custom made adsorbent tubes were used for active and passive sampling and in both cases were analysed by thermal-desorption GC. Particularly the combination of passive sampling and thermodesorption-GC analysis offers significant advantages over the commonly used active sampling on activated charcoal, followed by CS2 desorption in terms of avoidance of hazardous solvents, potential for automation and improved detection limits. Both sampling techniques are capable for monitoring VOCs at concentrations and under conditions relevant for workplace monitoring.  相似文献   

18.
A fast screening protocol was developed and validated for the simultaneous determination of 15 β2‐agonists in human urine (bambuterol, cimbuterol, clenbuterol, fenoterol, formoterol, isoproterenol, mapenterol, metaproterenol, procaterol, ractopamine, ritodrine, salbutamol, salmeterol, terbutaline, tulobuterol). The overall sample processing includes deconjugation with enzyme hydrolysis, liquid–liquid extraction, followed by derivatization of the extract and detection of β2‐agonists trimethylsilyl‐derivatives by fast‐gas chromatography/electron impact–mass spectrometry (fast‐GC/EI‐MS). Sample extraction and derivatization were optimized with the purpose of improving recoveries and reaction yields for a variety of analytes with different structures simultaneously, while keeping the procedure simple and reliable. Validation parameters were determined for each analyte under investigation, including selectivity, linearity, intra‐ and inter‐assay precision, extraction recoveries and signal to noise ratio (S/N) at the lowest calibration level. Fast‐GC/MS sequences, based on the use of short columns, high carrier‐gas velocity and fast temperature ramping, allow considerable reduction of the analysis time (7 min), while maintaining adequate chromatographic resolution. The overall GC cycle time was less than 9 min, allowing a processing rate of 6 samples/h. High MS‐sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. The method was successfully tested on real samples arising from clinical treatments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A benchtop SFC/MS system is described which utilizes supercritical carbon dioxide in a 50 micron diameter open tubular column interfaced directly to an unchanged commercially available benchtop capillary GC/MS system equipped with a chemical ionization (CI) source. A small amount of methane reagent gas was admitted co-axially to a capillary restrictor at the exit of the capillary chromatographic column. This make-up gas served as the CI reagent gas and appeared to optimize the sensitivity of the system while providing abundant (M+1) ions for the analytes investigated in this study. Good chromatographic intergrity was obtained for the GC/MS test compound, decafluorotriphenylphosphine (DFTPP), but the capillary restrictor appeared to cause some tailing of the ion current profiles resulting from low nanogram levels of caffeine and some fatty acid esters. Improvements in the SFC/MS capillary restrictor interface and the pumping system of the benchtop GC/MS system should increase the capability of this system for future applications.  相似文献   

20.
The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 °C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 × 10−4 cm3 s−1 with detection limit of 58.8 μg m−3 h−1. Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号