首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circular cone programming (CCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of circular cones. In this paper, we study nondegeneracy and strict complementarity for the CCP, and present a nonmonotone smoothing Newton method for solving the CCP. We reformulate the CCP as a second-order cone programming (SOCP) problem using the algebraic relation between the circular cone and the second-order cone. Then based on a one parametric class of smoothing functions for the SOCP, a smoothing Newton method is developed for the CCP by adopting a new nonmonotone line search scheme. Without restrictions regarding its starting point, our algorithm solves one linear system of equations approximately and performs one line search at each iteration. Under mild assumptions, our algorithm is shown to possess global and local quadratic convergence properties. Some preliminary numerical results illustrate that our nonmonotone smoothing Newton method is promising for solving the CCP.  相似文献   

2.
In last decades, there has been much effort on the solution and the analysis of the mixed complementarity problem (MCP) by reformulating MCP as an unconstrained minimization involving an MCP function. In this paper, we propose a new modified one-step smoothing Newton method for solving general (not necessarily P0) mixed complementarity problems based on well-known Chen-Harker-Kanzow-Smale smooth function. Under suitable assumptions, global convergence and locally superlinear convergence of the algorithm are established.  相似文献   

3.
A new smoothing algorithm for the solution of nonlinear complementarity problems (NCP) is introduced in this paper. It is based on semismooth equation reformulation of NCP by Fischer–Burmeister function and its related smooth approximation. In each iteration the corresponding linear system is solved only approximately. Since inexact directions are not necessarily descent, a nonmonotone technique is used for globalization procedure. Numerical results are also presented. Research supported by Ministry of Science, Republic of Serbia, grant No. 144006.  相似文献   

4.
Na Zhao  Tie Ni 《Optimization》2018,67(8):1231-1245
In this paper, based on a new smoothing function, the general box constrained variational inequalities are solved by a smoothing Newton algorithm with a nonmonotone line search. The proposed algorithm is proved to be globally and locally superlinearly convergent under suitable assumptions. The preliminary numerical results are reported.  相似文献   

5.
In this paper, we propose a regularized version of the generalized NCP-function proposed by Hu, Huang and Chen [J. Comput. Appl. Math., 230 (2009), pp. 69-82]. Based on this regularized function, we propose a semismooth Newton method for solving nonlinear complementarity problems, where a non-monotone line search scheme is used. In particular, we show that the proposed non-monotone method is globally and locally superlinearly convergent under suitable assumptions. We test the proposed method by solving the test problems from MCPLIB. Numerical experiments indicate that this algorithm has better numerical performance in the case of $p=5$ and $\theta\in[0.25,075]$ than other cases.  相似文献   

6.
Aggregate function is a useful smoothing function to the max-function of some smooth functions and has been used to solve minimax problems, linear and nonlinear programming, generalized complementarity problems, etc. The aggregate function is a single smooth but complex function, its gradient and Hessian calculations are time-consuming. In this paper, a truncated aggregate smoothing stabilized Newton method for solving minimax problems is presented. At each iteration, only a small subset of the components in the max-function are aggregated, hence the number of gradient and Hessian calculations is reduced dramatically. The subset is adaptively updated with some truncating criterions, concerning only with computation of function values and not their gradients or Hessians, to guarantee the global convergence and, for the inner iteration, locally quadratic convergence with as few computational cost as possible. Numerical results show the efficiency of the proposed algorithm.  相似文献   

7.
The mixed complementarity problem (denote by MCP(F)) can be reformulated as the solution of a smooth system of equations. In the paper, based on a perturbed mid function, we propose a new smoothing function, which has an important property, not satisfied by many other smoothing function. The existence and continuity of a smooth path for solving the mixed complementarity problem with a P0 function are discussed. Then we presented a one-step smoothing Newton algorithm to solve the MCP with a P0 function. The global convergence of the proposed algorithm is verified under mild conditions. And by using the smooth and semismooth technique, the rate of convergence of the method is proved under some suitable assumptions.  相似文献   

8.
A variant of the Newton method for nonsmooth equations is applied to solve numerically quasivariational inequalities with monotone operators. For this purpose, we investigate the semismoothness of a certain locally Lipschitz operator coming from the quasi-variational inequality, and analyse the generalized Jacobian of this operator to ensure local convergence of the method. A simplified variant of this approach, applicable to implicit complementarity problems, is also studied. Small test examples have been computed.This work has been supported in parts by a grant from the German Scientific Foundation and by a grant from the Czech Academy of Sciences.  相似文献   

9.
We propose a class of parametric smooth functions that approximate the fundamental plus function, (x)+=max{0, x}, by twice integrating a probability density function. This leads to classes of smooth parametric nonlinear equation approximations of nonlinear and mixed complementarity problems (NCPs and MCPs). For any solvable NCP or MCP, existence of an arbitrarily accurate solution to the smooth nonlinear equations as well as the NCP or MCP, is established for sufficiently large value of a smoothing parameter . Newton-based algorithms are proposed for the smooth problem. For strongly monotone NCPs, global convergence and local quadratic convergence are established. For solvable monotone NCPs, each accumulation point of the proposed algorithms solves the smooth problem. Exact solutions of our smooth nonlinear equation for various values of the parameter , generate an interior path, which is different from the central path for interior point method. Computational results for 52 test problems compare favorably with these for another Newton-based method. The smooth technique is capable of solving efficiently the test problems solved by Dirkse and Ferris [6], Harker and Xiao [11] and Pang & Gabriel [28].This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grant CCR-9322479.  相似文献   

10.
近年来, 越来越多的人意识到随机互补问题在经济管理中具有十分重要的作用。有学者已将随机互补问题由矩阵推广到张量, 并提出了张量随机互补问题。本文通过引入一类光滑函数, 提出了求解张量随机互补问题的一种光滑牛顿算法, 并证明了算法的全局和局部收敛性, 最后通过数值实验验证了算法的有效性。  相似文献   

11.
近年来, 越来越多的人意识到随机互补问题在经济管理中具有十分重要的作用。有学者已将随机互补问题由矩阵推广到张量, 并提出了张量随机互补问题。本文通过引入一类光滑函数, 提出了求解张量随机互补问题的一种光滑牛顿算法, 并证明了算法的全局和局部收敛性, 最后通过数值实验验证了算法的有效性。  相似文献   

12.
This paper presents a nonmonotone inexact Newton-type method for the extended linear complementarity problem (ELCP). We first reformulate the optimization system of the ELCP problem into a system of smoothed equations. Then we solve this system by a nonmonotone inexact Newton-type algorithm. The global convergence is obtained and numerical tests for some classes of ELCP include linear complementarity, horizontal linear complementarity, and generalized linear complementarity problems are also given to show the e?ciency of the proposed algorithm.  相似文献   

13.
《Optimization》2012,61(9):1935-1955
The second-order cone complementarity problem (denoted by SOCCP) can be effectively solved by smoothing-type algorithms, which in general are designed based on some monotone line search. In this paper, based on a new smoothing function of the Fischer–Burmeister function, we propose a smoothing-type algorithm for solving the SOCCP. The proposed algorithm uses a new nonmonotone line search scheme, which contains the usual monotone line search as a special case. Under suitable assumptions, we show that the proposed algorithm is globally and locally quadratically convergent. Some numerical results are reported which indicate the effectiveness of the proposed algorithm.  相似文献   

14.
A smoothing inexact Newton method for nonlinear complementarity problems   总被引:1,自引:0,他引:1  
In this article, we propose a new smoothing inexact Newton algorithm for solving nonlinear complementarity problems (NCP) base on the smoothed Fischer-Burmeister function. In each iteration, the corresponding linear system is solved only approximately. The global convergence and local superlinear convergence are established without strict complementarity assumption at the NCP solution. Preliminary numerical results indicate that the method is effective for large-scale NCP.  相似文献   

15.
16.
We consider a class of mathematical programs governed by parameterized quasi-variational inequalities(QVI).The necessary optimality conditions for the optimization problem with QVI constraints are reformulated as a system of nonsmooth equations under the linear independence constraint qualification and the strict slackness condition.A set of second order sufficient conditions for the mathematical program with parameterized QVI constraints are proposed,which are demonstrated to be sufficient for the second o...  相似文献   

17.
研究一类无限维非线性互补问题的光滑化牛顿法.借助于非线性互补函数,将无限维非线性互补问题转化为一个非光滑算子方程.构造光滑算子逼近非光滑算子,在光滑逼近算子满足方向可微相容性的条件下,证明了光滑化牛顿法具有超线性收敛性.  相似文献   

18.
In this paper, we first investigate a two-parametric class of smoothing functions which contains the penalized smoothing Fischer-Burmeister function and the penalized smoothing CHKS function as special cases. Then we present a smoothing Newton method for the nonlinear complementarity problem based on the class of smoothing functions. Issues such as line search rule, boundedness of the level set, global and quadratic convergence are studied. In particular, we give a line search rule containing the common used Armijo-type line search rule as a special case. Also without requiring strict complementarity assumption at the P0-NCP solution or the nonemptyness and boundedness of the solution set, the proposed algorithm is proved to be globally convergent. Preliminary numerical results show the efficiency of the algorithm and provide efficient domains of the two parameters for the complementarity problems.  相似文献   

19.
A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, a merit function method for solving nonlinear complementarity problem is investigated, and the global convergence of the proposed algorithm is proved under some standard assumptions. Some preliminary numerical results are given.  相似文献   

20.
A Smoothing Newton Method for General Nonlinear Complementarity Problems   总被引:5,自引:0,他引:5  
Smoothing Newton methods for nonlinear complementarity problems NCP(F) often require F to be at least a P 0-function in order to guarantee that the underlying Newton equation is solvable. Based on a special equation reformulation of NCP(F), we propose a new smoothing Newton method for general nonlinear complementarity problems. The introduction of Kanzow and Pieper's gradient step makes our algorithm to be globally convergent. Under certain conditions, our method achieves fast local convergence rate. Extensive numerical results are also reported for all complementarity problems in MCPLIB and GAMSLIB libraries with all available starting points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号