首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient for global or local optimality under some MPEC generalized convexity assumptions. Moreover, we propose new constraint qualifications for M-stationary conditions to hold. These new constraint qualifications include piecewise MFCQ, piecewise Slater condition, MPEC weak reverse convex constraint qualification, MPEC Arrow-Hurwicz-Uzawa constraint qualification, MPEC Zangwill constraint qualification, MPEC Kuhn-Tucker constraint qualification, and MPEC Abadie constraint qualification.  相似文献   

2.
We consider a nonsmooth multiobjective programming problem with inequality and set constraints. By using the notion of convexificator, we extend the Abadie constraint qualification, and derive the strong Kuhn-Tucker necessary optimality conditions. Some other constraint qualifications have been generalized and their interrelations are investigated.  相似文献   

3.
We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are all weaker than the MPEC linear independence constraint qualification, and derive several second-order optimality conditions for MPEC under the new MPEC constraint qualifications. Finally, we discuss the isolatedness of local minimizers for MPEC under very weak conditions.  相似文献   

4.
约束规格在约束优化问题的最优性条件中起着重要的作用,介绍了近几年国际上关于均衡约束数学规划(简记为MPEC)的约束规格以及最优性条件的研究成果, 包括以下主要内容: (1) MPEC常用的约束规格(如线性无关约束规格 (MPEC-LICQ)、Mangasarian-Fromovitz约束规格 (MPEC-MFCQ)等)和新的约束规格(如恒秩约束规格、常数正线性相关约束规格等), 以及它们之间的关系; (2) MPEC常用的稳定点; (3) MPEC的最优性条件. 最后还对MPEC的约束规格和最优性条件的研究前景进行了探讨.  相似文献   

5.
It is well known that mathematical programs with equilibrium constraints (MPEC) violate the standard constraint qualifications such as Mangasarian–Fromovitz constraint qualification (MFCQ) and hence the usual Karush–Kuhn–Tucker conditions cannot be used as stationary conditions unless relatively strong assumptions are satisfied. This observation has led to a number of weaker stationary conditions, with Mordukhovich stationary (M-stationary) condition being the strongest among the weaker conditions. In nonlinear programming, it is known that MFCQ leads to an exact penalization. In this paper we show that MPEC GMFCQ, an MPEC variant of MFCQ, leads to a partial exact penalty where all the constraints except a simple linear complementarity constraint are moved to the objective function. The partial exact penalty function, however, is nonsmooth. By smoothing the partial exact penalty function, we design an algorithm which is shown to be globally convergent to an M-stationary point under an extended version of the MPEC GMFCQ.  相似文献   

6.
We introduce extensions of the Mangasarian-Fromovitz and Abadie constraint qualifications to nonsmooth optimization problems with feasibility given by means of lower-level sets. We do not assume directional differentiability, but only upper semicontinuity of the defining functions. By deriving and reviewing primal first-order optimality conditions for nonsmooth problems, we motivate the formulations of the constraint qualifications. Then, we study their interrelation, and we show how they are related to the Slater condition for nonsmooth convex problems, to nonsmooth reverse-convex problems, to the stability of parametric feasible set mappings, and to alternative theorems for the derivation of dual first-order optimality conditions.In the literature on general semi-infinite programming problems, a number of formally different extensions of the Mangasarian-Fromovitz constraint qualification have been introduced recently under different structural assumptions. We show that all these extensions are unified by the constraint qualification presented here.  相似文献   

7.
Mathematical programs with equilibrium constraints (MPEC) are nonlinear programs which do not satisfy any of the common constraint qualifications (CQ). In order to obtain first-order optimality conditions, constraint qualifications tailored to the MPECs have been developed and researched in the past. In this paper, we introduce a new Abadie-type constraint qualification for MPECs. We investigate sufficient conditions for this new CQ, discuss its relationship to several existing MPEC constraint qualifications, and introduce a new Slater-type constraint qualifications. Finally, we prove a new stationarity concept to be a necessary optimality condition under our new Abadie-type CQ.Communicated by Z. Q. Luo  相似文献   

8.
In this paper, we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints. We first show that, unlike the smooth case, the mathematical program with equilibrium constraints linear independent constraint qualification is not a constraint qualification for the strong stationary condition when the objective function is nonsmooth. We then focus on the study of the enhanced version of the Mordukhovich stationary condition, which is a weaker optimality condition than the strong stationary condition. We introduce the quasi-normality and several other new constraint qualifications and show that the enhanced Mordukhovich stationary condition holds under them. Finally, we prove that quasi-normality with regularity implies the existence of a local error bound.  相似文献   

9.
In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Then, we derive a necessary optimality result for nonsmooth MPEC on any Asplund space. Also, under generalized convexity assumptions, we establish sufficient optimality conditions for this program in Banach spaces.  相似文献   

10.
This study is devoted to constraint qualifications and Kuhn-Tucker type necessary optimality conditions for nonsmooth optimization problems involving locally Lipschitz functions. The main tool of the study is the concept of convexificators. First, the case of a minimization problem in the presence of an arbitrary set constraint is considered by using the contingent cone and the adjacent cone to the constraint set. Then, in the case of a minimization problem with inequality constraints, Abadie type constraint qualifications and several other qualifications are proposed; Kuhn-Tucker type necessary optimality conditions are derived under the qualifications.Communicated by S. SchaibleThe authors thank the referees for bringing to their attention some papers closely related to this study and for helpful comments and constructive suggestions that have greatly improved the original version of the paper. Further, they are indebted to Professors H. W. Sun and F. Y. Lu, who suggested an example for this paper. The first author thanks S. Schaible for encouragement during this research.  相似文献   

11.
In this study we present an important theorem of the alternative involving convex functions and convex cones. From this theorem we develop saddle value optimality criteria and stationary optimality criteria for convex programs. Under suitable constraint qualification we obtain a generalized form of the Kuhn-Tucker conditions. We also use the theorem of the alternative in developing an important duality theorem. No duality gaps are encountered under the constraint qualification imposed earlier and the dual problem always possesses a solution. Moreover, it is shown that all constraint qualifications assure that the primal problem is stable in the sense used by Gale and others. The notion of stability is closely tied up with the positivity of the lagrangian multiplier of the objective function.  相似文献   

12.
《Optimization》2012,61(6):517-534
We recapitulate the well-known fact that most of the standard constraint qualifications are violated for mathematical programs with equilibrium constraints (MPECs). We go on to show that the Abadie constraint qualification is only satisfied in fairly restrictive circumstances. In order to avoid this problem, we fall back on the Guignard constraint qualification (GCQ). We examine its general properties and clarify the position it occupies in the context of MPECs. We show that strong stationarity is a necessary optimality condition under GCQ. Also, we present several sufficient conditions for GCQ, showing that it is usually satisfied for MPECs.  相似文献   

13.
In this paper we consider a nonsmooth optimization problem with equality, inequality and set constraints. We propose new constraint qualifications and Kuhn–Tucker type necessary optimality conditions for this problem involving locally Lipschitz functions. The main tool of our approach is the notion of convexificators. We introduce a nonsmooth version of the Mangasarian–Fromovitz constraint qualification and show that this constraint qualification is necessary and sufficient for the Kuhn–Tucker multipliers set to be nonempty and bounded.  相似文献   

14.
We introduce a relaxed version of the constant positive linear dependence constraint qualification for mathematical programs with equilibrium constraints (MPEC). This condition is weaker but easier to check than the MPEC constant positive linear dependence constraint qualification, and stronger than the MPEC Abadie constraint qualification (thus, it is an MPEC constraint qualification for M-stationarity). Neither the new constraint qualification implies the MPEC generalized quasinormality, nor the MPEC generalized quasinormality implies the new constraint qualification. The new one ensures the validity of the local MPEC error bound under certain additional assumptions. We also have improved some recent results on the existence of a local error bound in the standard nonlinear program.  相似文献   

15.

We introduce three new constraint qualifications for nonlinear second order cone programming problems that we call constant rank constraint qualification, relaxed constant rank constraint qualification and constant rank of the subspace component condition. Our development is inspired by the corresponding constraint qualifications for nonlinear programming problems. We provide proofs and examples that show the relations of the three new constraint qualifications with other known constraint qualifications. In particular, the new constraint qualifications neither imply nor are implied by Robinson’s constraint qualification, but they are stronger than Abadie’s constraint qualification. First order necessary optimality conditions are shown to hold under the three new constraint qualifications, whereas the second order necessary conditions hold for two of them, the constant rank constraint qualification and the relaxed constant rank constraint qualification.

  相似文献   

16.
《Optimization》2012,61(3):277-286
Mathematical programs with equilibrium constraints (MPECs) are nonlinear programs which do not satisfy any of the common constraint qualifications. In order to obtain first order optimality conditions, constraint qualifications tailored to MPECs have been developed and researched in the past. This has been done by falling back on technical proofs or results from nonsmooth analysis. In this article, we use a completely different approach and show how the standard Fritz John conditions may be used in order to obtain short and elementary proofs for the most important optimality conditions for MPECs. As a by-product, we obtain a new stationarity concept.  相似文献   

17.
18.
Mathematical programs with equilibrium constraints are optimization problems which violate most of the standard constraint qualifications. Hence the usual Karush-Kuhn-Tucker conditions cannot be viewed as first order optimality conditions unless relatively strong assumptions are satisfied. This observation has lead to a number of weaker first order conditions, with M-stationarity being the strongest among these weaker conditions. Here we show that M-stationarity is a first order optimality condition under a very weak Abadie-type constraint qualification. Our approach is inspired by the methodology employed by Jane Ye, who proved the same result using results from optimization problems with variational inequality constraints. In the course of our investigation, several concepts are translated to an MPEC setting, yielding in particular a very strong exact penalization result.  相似文献   

19.
We consider a difficult class of optimization problems that we call a mathematical program with vanishing constraints. Problems of this kind arise in various applications including optimal topology design problems of mechanical structures. We show that some standard constraint qualifications like LICQ and MFCQ usually do not hold at a local minimum of our program, whereas the Abadie constraint qualification is sometimes satisfied. We also introduce a suitable modification of the standard Abadie constraint qualification as well as a corresponding optimality condition, and show that this modified constraint qualification holds under fairly mild assumptions. We also discuss the relation between our class of optimization problems with vanishing constraints and a mathematical program with equilibrium constraints.  相似文献   

20.
We study nonsmooth mathematical programs with equilibrium constraints. First we consider a general disjunctive program which embeds a large class of problems with equilibrium constraints. Then, we establish several constraint qualifications for these optimization problems. In particular, we generalize the Abadie and Guignard-type constraint qualifications. Subsequently, we specialize these results to mathematical program with equilibrium constraints. In our investigation, we show that a local minimum results in a so-called M-stationary point under a very weak constraint qualification.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号