首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We report a series of [2]borametallocenophanes of Ti, Zr, and Hf with various ligand systems. The ligands have been synthesized in high yields starting from 1,2-dibromo-1,2-bis(dimethylamino)diborane(4) upon reaction with Na[C5H5] and Li[C13H9], respectively. All compounds were fully characterized by multinuclear NMR spectroscopy and, for selected examples, by X-ray analysis.  相似文献   

2.
By reaction of [TiCl(3)(thf)(3)] with LiC(6)Cl(5), the homoleptic organotitanium(III) derivative [Li(thf)(4)][Ti(III)(C(6)Cl(5))(4)] (1) has been prepared as a paramagnetic (d(1), S = 1/2, g(av) = 1.959(2)), extremely air-sensitive compound. Oxidation of 1 with [N(C(6)H(4)Br-4)(3)][SbCl(6)] gives the diamagnetic (d(0)) organotitanium(IV) species [Ti(IV)(C(6)Cl(5))(4)] (2). Compounds 1 and 2 are also electrochemically related (E(1/2) = 0.05 V). The homoleptic, diamagnetic (d(10)) compounds [N(PPh(3))(2)][Tl(C(6)Cl(5))(4)] (3) and [Sn(C(6)Cl(5))(4)] (4) have also been prepared. Nearly tetrahedral environments have been found for the d(0), d(10), and d(1) metal centers in the molecular structures of compounds 2-4 as well as in that of [Li(thf)(2)(OEt(2))(2)][Ti(III)(C(6)Cl(5))(4)].CH(2)Cl(2) (1') (X-ray diffraction). The reaction of the heavier Group 4 metal halides, MCl(4) (M = Zr, Hf) with LiC(6)Cl(5) in the presence of [NBu(4)]Br gives, in turn, the heteroleptic species [NBu(4)][M(C(6)Cl(5))(3)Cl(2)] (M = Zr (5), Hf (6)). Compounds 5 and 6 are isomorphous and isostructural, with the metal center in a trigonal-bipyramidal (TBPY-5) environment defined by two axial Cl ligands and three equatorial C(6)Cl(5) groups (X-ray diffraction). No redox features are observed for compounds 3-6 in CH(2)Cl(2) solution between -1.6 and +1.6 V.  相似文献   

3.
Synthesis and Crystal Structure of (NH4)ZrF5 and (NH4)HfF5 by Oxidation of Zirconium and Hafnium with (NH4)HF2 Colourless single crystals of NH4ZrF5 ( 1 ) and NH4HfF5 ( 2 ) are obtained by reaction of the respective metal powders with NH4HF2 (4 weeks) in sealed Monel metal containers at 450 °C. They crystallize with the monoclinic space group P21/c with ( 1 / 2 ) a = 778.16(14)/786.35(12), b = 790.75(9)/786.64(8), c = 792.44(12)/786.01(12), β = 119.177(12)/119.828(10) isotypic to TlZrF5.  相似文献   

4.
A study regarding coordination chemistry of the bis(diphenylphosphino)amide ligand Ph2P‐N‐PPh2 at Group 4 metallocenes is presented herein. Coordination of N,N‐bis(diphenylphosphino)amine ( 1 ) to [(Cp2TiCl)2] (Cp=η5‐cyclopentadienyl) generated [Cp2Ti(Cl)P(Ph2)N(H)PPh2] ( 2 ). The heterometallacyclic complex [Cp2Ti(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Ti ) can be prepared by reaction of 2 with n‐butyllithium as well as from the reaction of the known titanocene–alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with the amine 1 . Reactions of the lithium amide [(thf)3Li{N(PPh2)2}] with [Cp2MCl2] (M=Zr, Hf) yielded the corresponding zirconocene and hafnocene complexes [Cp2M(Cl){κ2N,P‐N(PPh2)2}] ( 4 Zr and 4 Hf ). Reduction of 4 Zr with magnesium gave the highly strained heterometallacycle [Cp2Zr(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Zr ). Complexes 2 , 3 Ti , 4 Hf , and 3 Zr were characterized by X‐ray crystallography. The structures and bondings of all complexes were investigated by DFT calculations.  相似文献   

5.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

6.
7.
8.
9.
The chelating diamide lithium complex [Me2Si{NLiCH(Me)Ph}2]2 (1) was synthesized. The X‐ray structure of complex 1 reveals that in the solid state it is a dimer; every lithium atom is three coordinated. The [{Me2Si{NCH(CH3)Ph}2}ZrCl2LiCl(OEt2)2]2 (2) and [{Me2Si{NCH(CH3)Ph}2}HfCl2LiCl(OEt2)2]2 (3) complexes were formed by treatment of complex 1 with ZrCl4 and HfCl4 respectively in diethyl ether at ambient temperature. Complexes (2) and (3) were also characterized by X‐ray single‐crystal diffraction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

11.
Continued exploration of the coordination behavior of derivatives of 2-benzophenone-based ligands with metal alkoxides ([M(OR)4]) was undertaken from the reaction of 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid (H2-OBzA) with a series of Group 4 precursors. The products of these reactions were identified as: [(OR)2Ti(μ-(c,c-OBzA))]2 (OR?=?OCHMe2 (OPri; 1 ?2tol); OCMe3 (OBut; 2 ?THF); OCH2CMe3 (ONep; 3)), [[(OPri)3Ti(μ-OPri)Ti(OPri)2]2(μ-(μc,μ-OBzA))2]2 (4), [(ONep)3Zr(μ-ONep)2Zr(ONep)2]2(μ-(c,μ-OBzA)2) (5 ?tol), [(py)(OBut)3Zr]2(μ-(c,c-OBzA)) (6), [(OBut)2Hf(μ-OBut)]2(μ-(c,η1-OBzA)) (7) where ‘c’?=?chelating or η2; ‘μ’?=?bridging or η11(O,O’); and μc?=?bridging chelating or η11(O,O’); η2?:?η1. The metal centers for each of these compounds adopt a pseudo-octahedral geometry employing the OBzA ligand in numerous binding modes. The different functional oxygens (carboxylate, hydroxyl, and carbonyl) were employed in a variety of coordination modes for 1–7. The complexity of these OBzA-modified compounds is driven by a combination of the coordination behavior of the OBzA moieties, the size of the metal cation, and the pendant chain of the OR ligand. Solution NMR indicates a complex structure exists in solution that was considered to be consistent with the solid-state structure.  相似文献   

12.
The binary zirconium and hafnium polyazides [PPh4]2[M(N3)6] (M=Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride–azide exchange reactions with Me3SiN3 in the presence of two equivalents of [PPh4][N3]. The novel polyazido compounds were characterized by their vibrational spectra and their X‐ray crystal structures. Both anion structures provide experimental evidence for near‐linear M‐N‐N coordination of metal azides. The species [M(N3)4], [M(N3)5]? and [M(N3)6]2? (M=Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels.  相似文献   

13.
The following compounds were prepared and their pyrolysis in a stream of argon was studied: (η5-C5H5)2Ti(C?CC6H5)2, (η5-C5H4SiMe3)2-Ti(SH)2, [(η5-C5H5)Ti(μ-CH2)]2, (η5-C5H5)2ZrR2-(R?CH2, CH2C6H5, N(CH3)2), (η5-C5H4CH3)2-Zr(C?CC6H5)2, [(η5-C5H4SiMe3)2Zr(μ-S)]2, [(η5-C5H4SiMe3)2Hf(μ-S)]2 and (η5-C5H4SiMe3)2Hf-(C?CC6H5)2. The products of bulk pyrolysis of these materials were formed in 20–40% yield, based on the charged sample weight, and consisted mainly of titanium carbide together with small amounts of amorphous carbon.  相似文献   

14.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

15.
Reactions of C(6)H(5)Li and 4-CH(3)C(6)H(4)Li with halides of Ti, Ir, Hf, and Nb lead to the formation of homoleptic organometallic anions of these metals. Owing to their thermal instability and their sensitivity towards H(2) O and O(2) , these compounds are characterized by single-crystal structure determinations at low temperature, whereas other physical data could only be obtained occasionally. Three pentacoordinate complex anions [Ti(C(6)H(5))(5)](-), [Ti(4-CH(3)C(6)H(4))(5)](-), and [Zr(C(6)H(5))(5)](-) have square-pyramidal structures that display only slight deviations from the ideal geometry, in contrast to the already known structures of [Ti(CH(5))(5)](-). The hexacoordinate complex anions [Zr(C(6)H(5))(6)](2-), [Zr(4-CH(3)C(6)H(4))(6)](2-), [Nb(C(6)H(5))(6)](2-), and [Nb(4-CH(3)C(6)H(4))(6)](2-) all have trigonal-prismatic structures, in accord with the known hexamethyl complex dianions. In contrast, the hexacoordinate complex anion [Hf(C(6)H(5))(6)](2)(-) has an octahedral or close to octahedral structure, in contrast to the known trigonal-prismatic structures of [Ta(C(6)H(5))(6)](-) and [Ta(4-CH(3)C(6)H(4))(6) (-). A qualitative explanation for this structural variability is given.  相似文献   

16.
The Zn-Ta, Zn-Nb, Zn-Ti and Zn-Pb systems have been investigated with regard to the formation of mixed-metal alkoxides using infra-red as well as NMR (1H, 207Pb). Lewis acid-base reactions between alkoxides, and between alkoxides and zinc acetate, as well as metathesis reactions, have been considered. Zinc alkoxides are polymeric and quite inert with respect to the formation of heterometallic alkoxides. Their intertness can be overcome in the case of tantalum isopropoxide by using a in situ, freshly prepared colloidal suspension of Zn(OiPr)2. Metathesis reactions are another means of ensuring the formation of mixed-metal zinc-transition metal (M = Ta, Nb, Ti) alkoxides. The solid-state structure determination of [Ta2Zn(-O)(3-O)(-OiPr)3(OiPr)4I]2 2 makes it possible to establish that of the non-halide derivative [ZnTa2O2(OiPr)8]2 1. 1HNMR data indicate that the structures of both aggregates are retained in solution. Hydrolysis-polycondensation reactions of 2 and 1 give after thermal treatment Ta2ZnO6 with traces of Ta2O5 and of Ta2Zn3O8 and pure Ta2ZnO6 respectively.  相似文献   

17.
2-羟基吡啶与水氢键作用的理论研究   总被引:7,自引:0,他引:7  
本文采用量子化学的Hatree-Fock方法和密度泛函理论(DFT)的B3LYP方法,在6-31G(d)水平上,研究了2-羟基吡啶分子(Hy)及其酮式互变异构体2(1H)-吡啶酮(Py)与水的相互作用。考察它们之间在形成Hy…H2O,Py…H2O,Hy…Hy,Py…Py和Hy…Py等复合物前后的能量变化和分子结构参数变化特点。计算结果表明,在这些复合物中都形成了较强的氢键作用,在水合物中,Py与水形成复合物时能量降低较多,与实验结果一致。经过零点振动能(ZPVE)和基组叠加误差(BSSE)校正后的复合物离解能分别为38.3,40.8,73.0,82.7和71.1 kJ/mol(B3LYP/6-31G(d)),水合物的离解能远小于二聚体复合物,而酮式结构的二聚体的离解能最大。  相似文献   

18.
19.
20.
2-Hydroxy benzoic acid hydrazide (1) undergoes facile condensation with aromatic aldehydes to afford the corresponding 2-hydroxy benzoic acid arylidene hydrazides (2a–h) in good yields. Cyclocondensation of compounds 2a–h with thioglycolic acid yields 2-hydroxy-N(4-oxo-2-aryl-thiazolidin-3-yl)-benzamides (3a–h). These 3a–h compounds are for the reacted with benzaldehyde in the presence of sodium ethanolate affords, giving 2-hydroxy-N(5-methylene-4-oxo-2-aryl-thiazolidin-3-yl)-benzamides (4a–h). The structures of these compounds were established on the basis of analytical and spectral data. All the newly synthesized compounds were evaluated for their antibacterial and antifungal activities.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号