首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of mesogenic aroylhydrazone-based ligands, N-[4-(4′-alkoxy)benzoyloxybenzylidene]-N′-[4″-alkoxybenzoyl]hydrazine with either the same or different peripheral alkyl chains, and nickel(II) complexes of some of them have been synthesised. They were characterised by elemental analyses, Fourier transform infrared, proton and carbon nuclear magnetic resonance and ultraviolet-visible spectroscopy. The mesomorphic properties of these compounds were investigated by differential scanning calorimetry and polarising optical microscopy. All the aroylhydrazones, except those with no lateral chains on either end of the molecule and where m?=?n?=?14, 16, exhibit a monotropic or enantiotropic smectic C mesophase, which are almost insensitive to the peripheral alkoxy chain length. The square planar nickel(II) complexes of the ligands show only an isotropic phase at higher temperature (>175°C) and no mesogenic nature is observed. Density functional theory calculations have been performed using the GAUSSIAN-03 program at the Becke, three-parameter, Lee–Yang–Parr level to obtain the stable electronic structure of the ligand.  相似文献   

2.
Four novel Schiff base ligands and their copper(II) complexes, [Cu(L1)2] (1), [Cu(L2)2] (2), [Cu(L3)2] (3), and [Cu(L4)2] (4), were synthesized and characterized by elemental analyses, FT-IR, and UV–Vis spectroscopy. The ligands were synthesized from the condensation of 2-methoxyethylamine with various salicylaldehyde derivatives (x-salicylaldehyde for HLn, x = H (n = 1), 5-Br (n = 2), 3-OMe (n = 3), and 4-OMe (n = 4)). The molecular structures of 1, 2, and 3 were determined by the single crystal X-ray diffraction technique. The redox behavior studies of the complexes in acetonitrile display the electronic effects of the groups on the redox potential. The antioxidant activity of the Schiff base ligands and their Cu(II) complexes was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method and FRAP assay. Furthermore, the in vitro anticancer activity of compounds was screened, including MTT and migration assays against gastric cancer cell line (MKN-45). The results show that all ligands and complexes have antioxidant and anticancer activity in a concentration-dependent way.  相似文献   

3.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

4.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

5.
Three new complexes, {[Cu3(2,3-pyma)2(sip)2(H2O)5]·5H2O} n , {[Zn(H-2,3-pyma)(sip)(H2O)]·H2O} n , and {[Cd(H-2,3-pyma)(sip)(H2O)]·H2O} n (2,3-pyma = (2-pyridylmethyl,3-pyridylmethyl)amine and H3sip = 5-sulfoisophthalic acid) were synthesized and structurally characterized by single-crystal X-ray diffraction. The Cu(II) complex crystallizes in neutral two-dimensional layers in which the Cu(II) centers are bridged by both the flexible 2,3-pyma and the rigid sip ligands. The Zn(II) and Cd(II) complexes contain neutral one-dimensional chains linked by the rigid sip anions, whereas the flexible H-2,3-pyma ions only act as terminal ligands. The Cu(II) complex shows weak antiferromagnetic interactions, while the Zn(II) and Cd(II) complexes exhibit fluorescent emissions in the solid state.  相似文献   

6.
The following organic and organic–inorganic hybrid compounds were prepared as photo-luminescent materials following efficient and practical synthetic methods: 1,3-bis[4-(n-alkoxy)phenyl]-2-propen-1-one (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10); 3,5-bis[4-(n-alkoxy)phenyl]-1H-pyrazole (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10) (in case of n = 7, a mixture of 3,5-bis(4-heptyloxyphenyl)-1H-pyrazole and 3,5-bis(4-heptyloxyphenyl)-4H-pyrazole was detected) and bis(3,5-bis [4-(n-alkoxy) phenyl]-1H-pyrazole) silver(I) nitrate (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10). The prepared compounds have been characterised and their structures were elucidated depending upon (FTIR, UV-Vis, 1HNMR, 13CNMR, 2D 1H-1H-COSY, 2D 1H-13C-HSQC and mass spectra) in addition to molar conductivity measurements for silver(I) complexes. The mesomorphism behaviour of the prepared compounds was studied using polarised light optical microscopy and confirmed with differential scanning calorimetry and X-ray powder diffraction techniques. The studies showed that among all of these compounds only the pyrazole derivatives are liquid crystal materials. The luminescent properties of all the prepared compounds were also investigated which confirmed that all of these compounds are photo-luminescent in the crystalline solid state and in the mesophase.  相似文献   

7.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

8.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

9.
Continuation with our previous investigation which refers to the synthesis of a series of hydrophobic symmetrical azine compounds: 1,2-bis[4-(n-alkoxy)benzylidene]hydrazine (where, n-alkoxy: O(CH2)nH, n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 or 18), a series of hydrophobic asymmetrical azine compounds: [1-(4-propyloxy)-2-(4?-(n-alkoxy))benzylidene]hydrazine (where, n-alkoxy: O(CH2)nH, n = 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16 or 18) was synthesised following an efficient and practical method. These compounds were synthesised by the condensation reaction of hydrazine hydrate with 4-propyloxybenzaldehyde and appropriately 4-(n-alkoxy)benzaldehydes in acidic medium and ambient conditions (very simple way with no need of any sophisticated techniques). Moreover, two new series of silver(I) complexes based on symmetrical or asymmetrical azines have been synthesised (linear-binuclear type complexes with the general formula [Ag2(L)(NO3)2] were obtained). The organic compounds and their silver(I) complexes were characterised using different techniques: microelemental analysis and spectral data (FTIR, UV–Vis, 1HNMR, 13C{1H}NMR, 2D 1H-1H-COSY, 2D 1H-13C-HSQC and mass spectra) as well as molar conductivity measurements for silver(I) complexes. Liquid crystal behaviour of the prepared compounds were studied using polarised light optical microscopy and confirmed with differential scanning calorimetry and X-ray powder diffraction techniques. The studies revealed that all azine compounds and some of silver(I) complexes are liquid crystal materials. The luminescent properties of all the prepared compounds were also investigated which confirmed that all of these compounds are photo-luminescent in the crystalline solid state and in the mesophase.  相似文献   

10.
A new series of metal complexes [M(L)2] (where M = Sn(II), Pb(II), and HL = semicarbazone, thiosemicarbazone or phenylthiosemicarbazone) have been prepared and characterized by elemental analysis, conductance measurements, molecular weight determinations, UV–visible, infrared, and nuclear magnetic resonance (1H-, 13C-, and 119Sn-NMR) spectral studies. Elemental analysis of the metal complexes suggested 1 : 2 (metal–ligand) stoichiometry. Infrared spectra of the complexes agree with coordination to the metal through the nitrogen of the azomethine (>C=N?) and the oxygen/sulfur of the ketonic/thiolic group. Electronic spectra suggest a distorted tetrahedral geometry for all Schiff base complexes. The bond lengths, bond angles, highest occupied molecular orbital, lowest unoccupied molecular orbital, Mulliken atomic charges, and the lowest energy model structure of the complexes have been determined with DFT calculations. Representative Schiff base and its metal chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) and four strains of fungus (Penicillium chrysogenum, Aspergillus niger, Rhizopus nigricans, and Alternaria alternata). The metal chelates possess higher antimicrobial activity than the free ligands.  相似文献   

11.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   

12.
Two bidentate Schiff bases, 5-methyl-2-p-tolyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L1) and 2-(3-chloro-phenyl)-5-methyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L2), were synthesized by condensation of 4-acyl pyrazolones with p-toluidine in ethanol. These ligands have been characterized by elemental analysis, infrared (IR), 1H NMR, and mass spectra. A single crystal molecular structure of ligand L2 was also solved. Nickel(II) complexes of these ligands with general formula [ML2?·?2H2O] have been prepared by the interaction of aqueous solution of Ni-acetate with ethanolic solution of the appropriate ligand. The complexes were separated, analyzed, and their structures were elucidated on the basis of elemental analysis, Ni(II) determination, IR, UV-Vis, conductance, mass, and TGA-DTA data. Octahedral structure was proposed for the synthesized complexes.  相似文献   

13.
New hockey stick mesogens derived from 1,3,4-oxadiazole as a bent-core unit have been synthesised. The molecules resemble hockey stick shape due to the presence of two arms containing a different number of phenyl rings attached with the 1,3,4-oxadiazole bending unit. The shorter arm of the molecule consists of one phenyl ring and 4-n-alkyloxy terminal chains whereas the long arm of the molecule possesses containing two phenyl rings which are linked via imine linkage and reactive 4-n-undecenyloxy as a terminal chain. The thermal stabilities of the newly synthesised compounds were carried out by thermogravimetric analysis (TGA). The mesomorphic behaviour was investigated by polarising optical microscopy (POM) and differential scanning calorimetry (DSC). All the compounds exhibit enantiotropic nematic phase along with smectic phases (SmA and SmC phases). Interestingly, the compounds with lower 4-n-alkyloxy terminal chains (n = 4 and 6) exhibit a wide range of optically isotropic DC phase. On increasing, the terminal 4-n-alkoxy chain length the DC phase disappears. The photophysical properties of the compounds were investigated in different solvents and in the solid state. It was observed that the compound exhibit absorption in UV region and emission in the green region.  相似文献   

14.
New achiral four-ring unsymmetrical bent-core mesogens derived from 2,5-dihydroxybenzaldehyde and their copper(II) complexes have been synthesised as a new design with an imine and ester linkage. These new bent-core molecules resemble hockey-stick shape, which possesses 4-n-alkyloxy chain (4-n-hexyloxy and 4-n-decyloxy) at one end and methyl or methoxy group at the other end of the molecule. The synthesis, spectroscopic characterisation, phase transition temperature and characterisation of phase behaviour are reported. The bent-core molecules exhibited monotropic nematic and smectic A phase depending on the terminal chain length. Interestingly, copper(II) complexes of bent-core molecules displayed monotropic nematic phase. This is the first report on copper(II) complexes of bent-core molecules that exhibited nematic phase. The four-ring bent-core molecule exhibited fluorescence with large stoke shift. The density functional theory calculations of bent-core molecules and their copper(II) complexes are carried out using Gaussian 09 program at B3LYP level to obtain the stable molecular conformation, dipole moment, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energies and bending angle of the compounds. The natural atomic charges and electronic configurations of the atoms of free ligands as well as the complexes have been evaluated.  相似文献   

15.
N,N-Di-R-N′-(4-chlorobenzoyl)thiourea (Di-R: diethyl, di-n-propyl, di-n-butyl and diphenyl) ligands (HL1–4) and their Pt(II) complexes (cis-[Pt(L1–4-S,O)2]) have been synthesized and structurally characterized by elemental analyses, FT-IR and NMR spectroscopy. HL2 ligand and cis-[Pt(L4-S,O)2] metal complex have been also characterized by a single-crystal X-ray diffraction study. HL2, C14H19ClN2OS, crystallizes in the monoclinic space group P21/n (no. 14), with Z = 4, and unit cell parameters, a = 11.1405(16) Å, b = 9.7015(12) Å, c = 14.790(2) Å, β = 106.547(7)°. The cis-[Pt(L4-S,O)2], C40H28Cl2N4O2PtS2: triclinic, space group P-1 (no. 2), a = 8.9919(3) Å, b = 14.7159(6) Å, c = 15.7954(6) Å, α = 113.9317(18)°, β = 97.4490(18)°, and γ = 105.0492(16)°. Single crystal analysis of complex, cis-[Pt(L1–4-S,O)2], revealed that a square planar coordination geometry is formed around the platinum atom by two sulfur and two oxygen atoms of the related ligands, which are in a cis configuration. In addition, the thiourea derivative ligands and their complexes were evaluated for both their in-vitro antibacterial and antifungal activity. The results have been reported, explained, and compared with fluconazole and ampicillin, used as reference drugs.  相似文献   

16.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

17.
Two new Schiff base ligands 1 and 2 (where 1 = 4-(2-hydroxybenzilidenamino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate, 2 = 4-(4-(decyloxy)-2-hydroxybenziliden amino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate) and their copper (Cu)(II) complexes have been synthesised and characterised. The derivatives were fully characterised structurally, and their mesomorphic behaviour was investigated by polarised optical microscopyand differential scanning calorimetry. The structure of Cu(II) complex having 1 as ligand (3) was determined by X-ray diffraction. The Schiff base ligands exhibit enantiotropic nematic phases, the Cu(II) complex 4 shows monotropic nematic phase behaviour, while compound 3 does not show mesomorphism.  相似文献   

18.
Transition metal [Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)] complexes of a new Schiff base, 3-acetylcoumarin-o-aminobenzoylhydrazone were synthesized and characterized by elemental analyses, magnetic moments, conductivity measurements, spectral [Electronic, IR, 1H and 13C NMR, EPR] and thermal studies. The ligand crystallizes in the monoclinic system, space group P21/n with a?=?9.201(5), b?=?16.596(9), c?=?11.517(6)?Å, β?=?101.388(9)°, V?=?1724.2 (17)?Å3 and Z?=?4. Conductivity measurements indicated Mn(II) and Co(II) complexes to be 1?:?1 electrolytes whereas Ni(II), Cu(II), Zn(II) and Cd(II) complexes are non-electrolytes. Electronic spectra reveal that all the complexes possess four-coordinate geometry around the metal.  相似文献   

19.
A series of half-discoid [N2O2]-donor tetradentate alkoxy substituted salicylaldimine ligands, [N,N′-di- (4-n-alkoxysalicylidene)-4-Cl-l,2-diamino-benzene] (L; n?=?12, 14, 16 and 18) have been prepared. The reaction of the ‘salphen’-type Schiff base ligand with Zn(OAc)2.4H2O afforded a series of mononuclear zinc(II) complexes. The ligands and the corresponding zinc(II) complexes were characterised by elemental analysis, Fourier transform infrared, proton nuclear magnetic resonance and ultraviolet-visible spectroscopy. Although the ligands are non-mesogenic, columnar mesomorphism is induced upon complexation with the metal. The p2gg symmetry of the rectangular columnar phase is confirmed by variable temperature powder X-ray diffraction study. Two ‘half-disc’-shaped molecules with four alkoxy legs are presumed to self-assemble via a dimeric interaction filling the space. In contrast to the ligands, the zinc(II) complexes all exhibited moderately intense green emission at room temperature both in solution and in the solid state. Density functional theory calculation, carried out using a DMol3 program, revealed a distorted square planar geometry for the complexes. The mesomorphic and photoluminescence property of the zinc complexes are collated as a function of spacer substituent, as well as alkoxy carbon chain length.  相似文献   

20.
Proton-ligand association constants of 1-benzoyl(1,2,4-triazol-3-yl)thiourea (BTTU) and its complex formation constants with some bivalent metal ions Ni(II), Co(II), Mn(II), Zn(II), and Cu(II), have been determined potentiometrically in 50% EtOH–H2O and 0.1 M NaNO3. The complexes formed in solution have a stoichiometry of 1:1 and 1:2 [M:L], where M represents the metal ion and L the BTTU ligand. The corresponding thermodynamic parameters are derived and discussed. The complexes are stabilized by enthalpy changes and the results suggest that complexation is an enthalpy-driven process. The effects of metal ion, ionic radius, electronegativity, and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3d transition metals follow the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+. The metal complexes were synthesized and characterized by elemental analyses, conductance, IR, 1H NMR, and magnetic measurements. The low magnetic moment of 0.11 BM for the Cu(II) complex is suggestive of dimerization through Cu–Cu interaction. The concentration distribution diagrams of the complexes were evaluated. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号