首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Zn(II) complexes, [Zn2(bpp)2(FNA)2]·H2O (1), [Zn(bpp)(FNA)]·H2O (2), and Zn2(bpp)2(FNA)2 (3) (bpp = 1,3-bi(4-pyridyl)propane, H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesized and characterized by single-crystal and powder X-ray diffraction methods, IR spectroscopy, TG analyses, elemental analyses, and fluorescent analysis. In 1, the Zn(II) ions are linked by FNA anions and bpp into 2-D layers. The Zn(II) ions in 2 are bridged by FNA anions into chiral chains, which are interlinked by bpp into 3-D metal–organic framework with (65·8) CdS topology. Complex 3 features 1-D zigzag chains, which are interconnected by bpp ligands to give a 3-D framework with (6·74·8)(64·7·8) topology. Complexes 2 and 3 exhibit significant ferroelectric behavior (for 2 remnant polarization Pr = 0.050 μC cm?2, coercive field Ec = 1.13 kV cm?1, saturation of the spontaneous polarization Ps = 0.239 μC cm?2; for 3 Pr = 0.192 μC cm?2, Ec = 4.64 kV cm?1, Ps = 0.298 μC cm?2).  相似文献   

2.
A series of metal-organic frameworks, namely [Ni(PDB)(H2O)]n (1), [Pb(PDB)(H2O)] · (H2O) (2), [Co2(PDB)2(bpy)2(H2O)4] · 4H2O (3) and [Co2(PDB)2(phen)2]n (4) (H2PDB = pyridine-3,5-dicarboxylic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized based on pyridine-3,5-dicarboxylate acid and two neutral chelate ligands, with different metal ions such as NiII, CoII and PbII, under hydrothermal conditions. The framework structures of these polymeric complexes have been determined by the X-ray single crystal diffraction technique. In the four complexes, the pyridine-3,5-dicarboxylate acid ligand exhibits diverse coordination modes, which play an important role in the construction of metal-organic frameworks. The thermal analyses of these four complexes have been measured and discussed. In addition, complex 2 shows strong phosphorescent emission at room temperature and the magnetic measurement of the polymer of 4 reveals a typical antiferromagnetic exchange.  相似文献   

3.
Five new transition metal coordination polymers based on H2tzda and co-ligand bpe, {[M(tzda)(bpe)]·H2O}n [M=Zn(1), Cd(2), Mn(3), Co(4)] and [Ni2(tzda)2(bpe)2(H2O)]n (5) [H2tzda=(1,3,4-thiadiazole-2,5-diyldithio)diacetic acid, bpe=1,2-bis(4-pyridyl)ethane], have been hydrothermally synthesized and structurally characterized. Compounds 1-4 feature a 2D-layered architecture generated from [M(tzda)]n moiety with double-chain structure cross-linking bpe spacers. However, the conformations bpe adopts in 3 and 4 are different from those in 1 and 2 due to the rotation of C-C single bond in bpe. Polymer 5 exhibits an interesting 3D porous framework with 2-fold interpenetration, in which intriguing 1D double helix chains are observed. The photoluminescence properties of 1 and 2 in the solid-state at room temperature are investigated. In addition, variable-temperature magnetic data show weak antiferromagnetic behavior in 3-5.  相似文献   

4.
Two coordination polymers,{[Cu_3(tci)_2(DMAc)_3]-6DMAc 2H_2O}_n(1) and {[Cu_3(tci)_2(tpt)_2(H_2O)_2].2DMAc-2H_2O}_n(2)(H_3tci = tris(2-carboxyethyI)isocyanurate,tpt = 2,4,6-tris(4-pyridyl)-l,3,5-triazine,DMAc = N,/V-dimethylacetamide),have been constructed under solvothermal conditions.Both polymers were structurally characterized by single crystal X-ray diffraction,elemental analyses,IR spectra,thermogravimetric(TG) analyses and powder X-ray diffraction(RXPD).1 shows a(3,4)-connected 2D layer structure comprising Cu_2(CO_2)4 paddle-wheel units,which are further bridged by C-H…O interactions to give a 3D supramolecular network.The introduction of tpt produces different framework for 2 that comprises a dinuclear and a mononuclear Cu(Ⅱ) building units,which are further bridged together by tci~(3-) and tpt ligands to give a 4-connected 2D topological net.Adjacent 2D layers are packed together via C-H…O interactions and π…π stacking interactions to form a 3D supramolecular structure.In addition,the luminescent properties and the solid-state UV-vis spectra of 1 and 2 were explored.Furthermore,antiferromagnetic exchange interactions were unveiled in the Cu_2(COO)_4 units of 1.  相似文献   

5.
Two novel Cd(II) coordination polymers [Cd4(C6H4O2N)8(H2O)4]n (1) and [Cd2(C10H2O8)(H2O)6]n (2) have been synthesized under hydrothermal condition and structurally characterized. Crystal data: (1), orthorhombic, Pbca, a=11.4494(19) Å, b=12.0969(6) Å, c=17.4073(8) Å, V=2410.9(4) Å3, Z=8, D calc=2.064 g·cm−3; (2), triclinic, P , a=5.5962(7) Å, b=7.7758(6) Å, c=9.6975(10) Å, α=111.981(5)°, β=101.649(6)°, γ=98.240(5)°, V=371.95(7) Å3, Z=2, D calc=2.603 g·cm−3. Complex (1) possesses three-dimensional infinite structure, while complex (2) adopts two-dimensional layers and the layers are connected by the many types of hydrogen bonds, forming three-dimensional network. Study results of the photophysical properties show that both complexes can emit strong blue fluorescence and complex (1) also emits phosphorescence (λ pl max=511 nm, τ=32 ms) in the solid state at room temperature.  相似文献   

6.
Three new coordination polymers, [Cd(cqaH)(cqa)Cl]n (1), [Cd(cqaH)(cqa)Br]n (2) and {[Cd2(cqa)4] · 3H2O}n (3) (Hcqa = 7-chloroquinolin-4-alanine, cqaH = the Hcqa ligand, where the proton is transferred from the acid group to the imine group) have been prepared under hydrothermal conditions and characterized by X-ray structural analyses. Both complexes 1 and 2 possess 1D ribbon-like chains, and complex 3 features a 1D double-stranded chain. Various coordination fashions and supramolecular networks are observed in complexes 1–3 due to the versatile coordination modes of the ligand and the cooperative effect from anions in the assemblies. In addition, the luminescent properties for all compounds have been investigated in the solid state.  相似文献   

7.
A one-dimensional linear chain coordination polymer [ErLI(NO3)3(CH3CO2Et)]n (LI=1,2-bis{[(2'-furfurylaminoformyl)phenoxyl]methyl}benzene) and a one-dimensional zig-zag coordination polymer {[TbLII(NO3)3(H2O)]·(H2O)}n (LII=1,2-bis{[2'-(2-pyridylmethylaminoformyl)phenoxyl]methyl}benzene) were assembled by two structurally related bridging podands LI and LII which have uniform skeleton and different terminal groups. In {[TbLII(NO3)3(H2O)]·(H2O)}n, the neutral chains were linked by the hydrogen bonding interactions between the free and coordinated water molecules from two different directions to interpenetrate into a 3D supramolecular structure. At the same time, the luminescent properties of the solid Tb(III) nitrate complexes of these podands were investigated at room temperature. The lowest triplet state energy levels T1 of the podands LI and LII indicate that the triplet state energy levels of the antennae are both above the lowest excited resonance level of 5D4 of Tb3+ ion. Thus the absorbed energy could be transferred from ligands to the central Tb3+ ions. And the influence of the hydrogen bonding on the luminescence efficiencies of the coordination polymers was also discussed.  相似文献   

8.
Six heterometallic Zn(II) coordination polymers, Zn(H2O)3(FNA) (1), [NH4]2[Zn(H2O)2(FNA)2] (2), [ZnNa2(FNA)2]·3H2O (3), [ZnK2(FNA)2]·H2O (4), [ZnRb2(FNA)2]·2H2O (5) and [ZnMg(FNA)2]·4H2O (6) (H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesised by introducing different alkali/alkaline earth (AeI/AeII) metals. These complexes exhibit diverse structures with the different AeI/AeII metals used and distinct ligand coordination modes the ions provide. For 1 and 2, the Zn(II) centres with distorted octahedra are connected by FNA to form 1-D chain structures. The Zn(II) centres in 36 with distorted tetrahedra are linked by FNA to form 2-D anionic grid layers. For 35, these 2-D anionic grid layers are connected by alkali metal (Na, K and Rb) with the O–AeI–O connectivity to exhibit 3-D framework structures, while 6 features a 2-D Zn–Mg network. Luminescence properties of 16 have been investigated.  相似文献   

9.
Two novel interesting d10 metal coordination polymers, [Zn(H2bibzim)(BDC)]n (1) and [Cd(H2bibzim)(BDC)]n (2) [H2bibzim=2,2′-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The π-π interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2′-bibenzimidazole has been introduced into the d10 coordination polymeric framework.  相似文献   

10.
Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 13 in the solid state at room temperature have been investigated.  相似文献   

11.
Four coordination polymers [Zn(bqdc)(phen)]n (1), [Zn(bqdc)(bpy)(H2O)]n (2), [Mn(bqdc)(bpy)(H2O)2]n (3) and [Mn(bqdc)(phen)(H2O)2]n (4) (H2bqdc=2,2′-biquinoline-4,4′-dicarboxylic acid, phen=1,10-phenanthroline and bpy=2,2′-bipyridyl) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. Crystal data for 1: monoclinic system, C2/c, , , , β=103.78(3)°, , Z=4. Crystal data for 2: monoclinic system, p21/n, , , , β=107.13(7)°, , Z=4. Crystal data for 3: monoclinic system, C2/c, , , , β=116.8010(11)°, , Z=4. Crystal data for 4: monoclinic system, C2/c, , , , β=117.04(3)°, , Z=4. Single helix-like chains exist in 1. The supramolecular structure of 1 exhibits extended two-dimensional network while 2-4 display extended three-dimensional architectures based on interchain hydrogen bonding and π-π interactions. Compounds 1 and 2 show blue photoluminescence under UV light suggesting that they may be employed to develop luminescent materials. Compounds 3 and 4 show interesting magnetic behaviors.  相似文献   

12.
Two new Cd-containing coordination polymers {Cd2(succ)2(1,10′-phen)2} n (1) and {Cd(glut)(1,10′-phen)(H2O)} n (2) are described. Complex 1 exhibits an interesting 2-D structure in which the binuclear Cd centers are linked by succinate anions. Complex 2 possesses an interesting 1-D chain-like structure. The IR and TG properties of the two compounds are studied. Furthermore, these two complexes exhibit photoluminescence.  相似文献   

13.
Two coordination polymers, [Mn2(μ-L1)2(μ-N3)2]n (1) and [Mn(μ-HL2)(SCN)2]n (2), were assembled in a single-pot from MnCl2·4H2O, HL1 (2-acetylpyridine isonicotinoylhydrazone) or HL2 (2-acetylpyridine nicotinoylhydrazone) and ancillary ligand sources (NaN3 or NH4NCS). The products were fully characterized, including by single-crystal X-ray diffraction, which revealed a 2-D metal–organic layer in 1 and a 1-D zigzag coordination chain in 2. Both 1 and 2 are constructed from six-coordinate Mn(II) nodes that adopt distorted octahedral (MnN5O) environments; the adjacent nodes are driven by the μ-L1 and μ-N3 linkers in 1 or μ-HL2 linkers in 2 to form different metal–organic networks. Their topological classification was performed, disclosing the hcb and 2C1 topology in 1 and 2, respectively. Different weak non-covalent interactions promote dimensionality extension. Variable-temperature magnetic susceptibility measurements were carried out, revealing weak ferromagnetic and antiferromagnetic interactions in 1 and 2, respectively.  相似文献   

14.
Two Zn(II) coordination polymers, {[Zn3(L)2(bipy)2(H2O)4}n (1) and {[Zn(HL)(4,4′-bibp)}n (2), were obtained from Zn(II) nitrate, a tricarboxylate ligand (H3L) and different N-containing ligands with hydrothermal conditions, where H3L = 4-((6-carboxynaphthalen-2-yl)oxy)phthalic acid, bipy = 4,4′-bipyridine, and 4,4′-bibp = 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl. Single-crystal X-ray analysis reveals that 1 has a 2-D layer framework formed by L3? and bipy and 2 has an infinite 1-D structure with Zn2 units built by 4,4′-bibp ligands. The phase purity, IR spectra, thermal stabilities, and fluorescence properties in the solid state of 1 and 2 were investigated. Moreover, 1 and 2 were chosen as fluorescent probes to sense different metal ions, showing selective response to Fe3+ ion through luminescence quenching. The possible sensing mechanism to Fe3+ ion is also discussed.  相似文献   

15.
Five coordination polymers, namely [Cd(L3)2]·H2O (1), [Zn(L3)2] (2), [Co(L3)2] (3), [Ni(L3)2] (4) and [Cu2(L3)2]·3H2O (5), where L3 = 3,5-bis(pyridin-3-ylmethoxy)benzoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compound 1 is a binodal (3,4)-connected net with (63)(66) topology. Compounds 24 are isostructural and described by the uninodal (4,4)-connected net with (44 · 62) Schläfli symbol. The structure of 5 is a 2D binodal (6,3) net. In addition, the luminescent properties of compounds 1 and 2 have been studied in the solid state at room temperature.  相似文献   

16.
The new double Schiff-base ligands H6ipa-hyhb and H6ipa-hyhh were synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with 4-hydroxy-butanoic acid hydrazide (hyhb) and 6-hydroxy-hexanoic acid hydrazide (hyhh). The reaction with copper(II) perchlorate in the presence of an appropriate co-ligand (Him = imidazole, Hpz = pyrazole) leads to the novel coordination polymers {[Cu2(H4ipa-hyhb)(Hpz)2](ClO4)2}n (1), {[Cu2(H4ipa-hyhb)(Him)2](ClO4)2}n (2), and {[Cu2-(H4ipa-hyhh)(Hpz)2](ClO4)2}n (3). These coordination polymers are composed of primary building blocks with the general formula [Cu2(H4ipa-X)(L)2]2+ (X = hyhb, hyhh; L = Him, Hpz) which are linked by coordination of the hydroxyl groups of the ligand side chains at the apical position of copper(II) centers of adjacent building blocks. The resulting chains possess different topologies and therefore different supramolecular structures due to the variation in length of the ligand alkyl side chains. For the complexes 1 and 2 double hydroxyalkyl-bridged distorted ladder like chains are formed. Whereas in case of complex 3 single hydroxyalkyl-bridged chains are obtained which assemble to hydrogen bonded double chains. In the case of 1 and 2 these chains are cross-linked by hydrogen bonding interactions with the perchlorate counterions, whereas for 3 additional π–π stacking interaction are observed. The temperature-dependent magnetic measurements indicate weak antiferromagnetic interactions with coupling constants J = −26.1 cm−1 (1), J = −28.2 cm−1 (2), and J = −26.5 cm−1 (3). The magnetic exchange interaction is solely the result of a coupling within the dinuclear complex moieties through the central resorcinol moiety.  相似文献   

17.
Reaction of MX2 (M = Cd, Zn; X = Cl, Br, I) with 2-cyanopyrazine leads to the formation of compounds with the composition CdX2(2-cyanopyrazine)2 (X = Cl; CdCl , X = Br; CdBr and X = I; CdI ) and ZnX2(2-cyanopyrazine)2 (X = Cl; ZnCl , X = Br; ZnBr and X = I; ZnI/I ). In the crystal structures of the Cd compounds and in ZnCl , the metal cations are octahedrally coordinated and are linked into chains by the halide anions via common edges. In contrast, in the crystal structures of ZnBr and ZnI/I the metal cations are tetrahedrally coordinated into discrete complexes. Further investigations show that a second modification of ZnCl2(2-cyanopyrazine)2 exists ( ZnI/II ), which is formed by kinetic control. The thermal properties of the 2-cyanopyrazine rich compounds were investigated by TG-DTA and temperature dependent XRPD measurements. Upon heating the Cd compounds, all 2-cyanopyrazine ligands are removed in a single step with no indication of the formation of a 2-cyanopyrazine deficient phase. A similar behavior is observed for ZnI , whereas for ZnCl and ZnBr , TG-DTA measurements suggest the formation of a 2-cyanopyrazine deficient phase that, in case of ZnBr , cannot be isolated and, for ZnCl , cannot be obtained pure. The emission of these compounds is shifted from the blue to orange depending on the crystal structure and the nature of the halide anion.  相似文献   

18.
Three coordination polymers (CPs) based on different dicarboxylic acids and Cd(II), [Cd3(tpa)3(DMA)4] (1), [Cd2(thpa)2(DMA)2·DMA] (2), and [Cd3(eba)3(DMA)] (3) (H2tpa = terephthalic acid, H2thpa = thiophenedicarboxylic acid, H2eba?=?(ethene-1,2-diyl)dibenzoic acid, DMA = N,N′-dimethylacetamide), were synthesized under solvothermal conditions. The CPs were characterized by elemental analysis (EA), single-crystal X-ray crystallography, powder X-ray diffraction, infrared spectroscopy (IR), and thermogravimetric analyses. X-ray crystallographic analysis shows that 1 and 3 exhibit a 2D six-connected hxl network based on hourglass-like [Cd3(COO)6] SBUs, whereas 2 displays a 2D 44-sql network based on [Cd4(COO)8] SBUs. Thermal stabilities and photoluminescence behaviors of the CPs are also discussed.  相似文献   

19.
Three new coordination polymers with formula [Gd(bta)(H2O)·1.39H2O] n (1), [Dy(bta)(H2O)·1.35H2O] n (2) and [Y(bta)(H2O)2·0.5H2O] n (3) were synthesized by using corresponding rare earth nitrates and 1,3,5-benzenetriacetic acid (H3bta) under hydrothermal/solvothermal reaction conditions, and characterized by single-crystal X-ray diffraction. In these complexes, the carboxylate groups of bta3− adopt different coordination modes, namely one carboxylate group adopts μ211-bridging and each of the other two carboxylate groups adopts μ221-bridging coordination modes in 1 and 2, and one carboxylate group adopts a μ221-bridging coordination mode and each of the other two carboxylate groups adopts a μ211-bridging mode for the major component and one carboxylate group adopts a μ221-bridging coordination mode, one has a μ211-bridging mode and the third has a monodentate mode for the minor component in 3. The magnetic properties of the complexes 1 and 2 were investigated in the temperature range of 1.8–300 K.  相似文献   

20.
The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H2O)]n(1), [Zn(PHDA)(BPP)]n(2), and [Cu2(PHDA)2(BPP)]n(3) (H2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 48668 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号