首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an infeasible Mehrotra-type predictor-corrector algorithm with a new center parameter updating scheme for Cartesian P *(κ)-linear complementarity problem over symmetric cones. Based on the Nesterov-Todd direction, we show that the iteration-complexity bound of the proposed algorithm is 𝒪((1 + κ)3 r 2log ε?1), where r is the rank of the associated Euclidean Jordan algebras and κ is the handicap of the problem and ε > 0 is the required precision. Some numerical results are reported as well.  相似文献   

2.
In this paper, we propose a second order interior point algorithm for symmetric cone programming using a wide neighborhood of the central path. The convergence is shown for commutative class of search directions. The complexity bound is O(r3/2 loge-1){O(r^{3/2}\,\log\epsilon^{-1})} for the NT methods, and O(r2 loge-1){O(r^{2}\,\log\epsilon^{-1})} for the XS and SX methods, where r is the rank of the associated Euclidean Jordan algebra and ${\epsilon\,{ > }\,0}${\epsilon\,{ > }\,0} is a given tolerance. If the staring point is strictly feasible, then the corresponding bounds can be reduced by a factor of r 3/4. The theory of Euclidean Jordan algebras is a basic tool in our analysis.  相似文献   

3.
In this paper we present an infeasible-interior-point algorithm, based on a new wide neighbourhood N(τ1, τ2, η), for linear programming over symmetric cones. We treat the classical Newton direction as the sum of two other directions. We prove that if these two directions are equipped with different and appropriate step sizes, then the new algorithm has a polynomial convergence for the commutative class of search directions. In particular, the complexity bound is O(r1.5logε?1) for the Nesterov-Todd (NT) direction, and O(r2logε?1) for the xs and sx directions, where r is the rank of the associated Euclidean Jordan algebra and ε > 0 is the required precision. If starting with a feasible point (x0, y0, s0) in N(τ1, τ2, η), the complexity bound is \(O\left( {\sqrt r \log {\varepsilon ^{ - 1}}} \right)\) for the NT direction, and O(rlogε?1) for the xs and sx directions. When the NT search direction is used, we get the best complexity bound of wide neighborhood interior-point algorithm for linear programming over symmetric cones.  相似文献   

4.
《Optimization》2012,61(2):169-191
We present an analysis of the full-Newton step infeasible interior-point algorithm for semidefinite optimization, which is an extension of the algorithm introduced by Roos [C. Roos, A full-Newton step 𝒪(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), pp. 1110–1136] for the linear optimization case. We use the proximity measure σ(V)?=?‖I???V 2‖ to overcome the difficulty of obtaining an upper bound of updated proximity after one full-Newton step, where I is an identity matrix and V is a symmetric positive definite matrix. It turns out that the complexity analysis of the algorithm is simplified and the iteration bound obtained is improved slightly.  相似文献   

5.
In this paper we present a primal-dual inexact infeasible interior-point algorithm for semidefinite programming problems (SDP). This algorithm allows the use of search directions that are calculated from the defining linear system with only moderate accuracy, and does not require feasibility to be maintained even if the initial iterate happened to be a feasible solution of the problem. Under a mild assumption on the inexactness, we show that the algorithm can find an -approximate solution of an SDP in O(n2ln(1/)) iterations. This bound of our algorithm is the same as that of the exact infeasible interior point algorithms proposed by Y. Zhang.Research supported in part by the Singapore-MIT alliance, and NUS Academic Research Grant R-146-000-032-112.Mathematics Subject Classification (1991): 90C05, 90C30, 65K05  相似文献   

6.
In this paper we study primal-dual path-following algorithms for the second-order cone programming (SOCP) based on a family of directions that is a natural extension of the Monteiro-Zhang (MZ) family for semidefinite programming. We show that the polynomial iteration-complexity bounds of two well-known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Adler, and the predictor-corrector algorithm of Mizuno et al., carry over to the context of SOCP, that is they have an O( logε-1) iteration-complexity to reduce the duality gap by a factor of ε, where n is the number of second-order cones. Since the MZ-type family studied in this paper includes an analogue of the Alizadeh, Haeberly and Overton pure Newton direction, we establish for the first time the polynomial convergence of primal-dual algorithms for SOCP based on this search direction. Received: June 5, 1998 / Accepted: September 8, 1999?Published online April 20, 2000  相似文献   

7.
8.
We present a full Nesterov and Todd step primal-dual infeasible interior-point algorithm for symmetric optimization based on Darvay’s technique by using Euclidean Jordan algebras. The search directions are obtained by an equivalent algebraic transformation of the centering equation. The algorithm decreases the duality gap and the feasibility residuals at the same rate. During this algorithm we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Each main iteration of the algorithm consists of a feasibility step and some centering steps. The starting point in the first iteration of the algorithm depends on a positive number ξ and it is strictly feasible for a perturbed pair. The feasibility steps find strictly feasible iterates for the next perturbed pair. By using centering steps for the new perturbed pair, we obtain strictly feasible iterates close to the central path of the new perturbed pair. The algorithm finds an ?-optimal solution or detects infeasibility of the given problem. Moreover, we derive the currently best known iteration bound for infeasible interior-point methods.  相似文献   

9.
Extension of primal-dual interior point algorithms to symmetric cones   总被引:7,自引:0,他引:7  
 In this paper we show that the so-called commutative class of primal-dual interior point algorithms which were designed by Monteiro and Zhang for semidefinite programming extends word-for-word to optimization problems over all symmetric cones. The machinery of Euclidean Jordan algebras is used to carry out this extension. Unlike some non-commutative algorithms such as the XS+SX method, this class of extensions does not use concepts outside of the Euclidean Jordan algebras. In particular no assumption is made about representability of the underlying Jordan algebra. As a special case, we prove polynomial iteration complexities for variants of the short-, semi-long-, and long-step path-following algorithms using the Nesterov-Todd, XS, or SX directions. Received: April 2000 / Accepted: May 2002 Published online: March 28, 2003 RID="⋆" ID="⋆" Part of this research was conducted when the first author was a postdoctoral associate at Center for Computational Optimization at Columbia University. RID="⋆⋆" ID="⋆⋆" Research supported in part by the U.S. National Science Foundation grant CCR-9901991 and Office of Naval Research contract number N00014-96-1-0704.  相似文献   

10.
We propose a new primal-dual infeasible interior-point method for symmetric optimization by using Euclidean Jordan algebras. Different kinds of interior-point methods can be obtained by using search directions based on kernel functions. Some search directions can be also determined by applying an algebraic equivalent transformation on the centering equation of the central path. Using this method we introduce a new search direction, which can not be derived from a usual kernel function. For this reason, we use the new notion of positive-asymptotic kernel function which induces the class of corresponding barriers. In general, the main iterations of the infeasible interior-point methods are composed of one feasibility and several centering steps. We prove that in our algorithm it is enough to take only one centering step in a main iteration in order to obtain a well-defined algorithm. Moreover, we conclude that the algorithm finds solution in polynomial time and has the same complexity as the currently best known infeasible interior-point methods. Finally, we give some numerical results.  相似文献   

11.
We present a new infeasible-interior-point method, based on a wide neighborhood, for symmetric cone programming. The convergence is shown for a commutative class of search directions, which includes the Nesterov–Todd direction and the xs and sx directions. Moreover, we derive the complexity bound of the wide neighborhood infeasible interior-point methods that coincides with the currently best known theoretical complexity bounds for the short step path-following algorithm.  相似文献   

12.
We present a unified analysis for a class of long-step primal-dual path-following algorithms for semidefinite programming whose search directions are obtained through linearization of the symmetrized equation of the central pathH P (XS) [PXSP –1 + (PXSP –1) T ]/2 = I, introduced by Zhang. At an iterate (X,S), we choose a scaling matrixP from the class of nonsingular matricesP such thatPXSP –1 is symmetric. This class of matrices includes the three well-known choices, namely:P = S 1/2 andP = X –1/2 proposed by Monteiro, and the matrixP corresponding to the Nesterov—Todd direction. We show that within the class of algorithms studied in this paper, the one based on the Nesterov—Todd direction has the lowest possible iteration-complexity bound that can provably be derived from our analysis. More specifically, its iteration-complexity bound is of the same order as that of the corresponding long-step primal-dual path-following algorithm for linear programming introduced by Kojima, Mizuno and Yoshise. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Corresponding author.This author's research is supported in part by the National Science Foundation under grants INT-9600343 and CCR-9700448 and the Office of Naval Research under grant N00014-94-1-0340.This author's research was supported in part by DOE DE-FG02-93ER25171-A001.  相似文献   

13.
We present a new primal-dual path-following interior-point algorithm for linear complementarity problem over symmetric cones. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov–Todd step feasible interior-point algorithm based on the search directions, the complexity bound of the algorithm with the small update approach is the best available.  相似文献   

14.
Euclidean Jordan algebra is a commonly used tool in designing interior-point algorithms for symmetric cone programs. In this paper, we present a full Nesterov–Todd (NT) step infeasible interior-point algorithm for horizontal linear complementarity problems over Cartesian product of symmetric cones. Since the algorithm uses only full-NT feasibility and centring steps, it has the advantage that no line searches are needed. The complexity result obtained here for symmetric cones using NT directions coincides with the best bound obtained for horizontal linear complementarity problems.  相似文献   

15.
In this paper we deal with the study of the polynomial complexity and numerical implementation for a short-step primal-dual interior point algorithm for monotone linear complementarity problems LCP. The analysis is based on a new class of search directions used by the author for convex quadratic programming (CQP) [M. Achache, A new primal-dual path-following method for convex quadratic programming, Computational and Applied Mathematics 25 (1) (2006) 97-110]. Here, we show that this algorithm enjoys the best theoretical polynomial complexity namely , iteration bound. For its numerical performances some strategies are used. Finally, we have tested this algorithm on some monotone linear complementarity problems.  相似文献   

16.
In this paper we propose a primal-dual path-following interior-point algorithm for second-order cone optimization. The algorithm is based on a new technique for finding the search directions and the strategy of the central path. At each iteration, we use only full Nesterov–Todd step. Moreover, we derive the currently best known iteration bound for the algorithm with small-update method, namely, , where N denotes the number of second-order cones in the problem formulation and ε the desired accuracy.  相似文献   

17.
In this paper, we generalize a primal–dual path-following interior-point algorithm for linear optimization to symmetric optimization by using Euclidean Jordan algebras. The proposed algorithm is based on a new technique for finding the search directions and the strategy of the central path. At each iteration, we use only full Nesterov–Todd steps. Moreover, we derive the currently best known iteration bound for the small-update method. This unifies the analysis for linear, second-order cone, and semidefinite optimizations.  相似文献   

18.

This paper presents an interior point algorithm for solving linear optimization problems in a wide neighborhood of the central path introduced by Ai and Zhang (SIAM J Optim 16:400–417, 2005). In each iteration, the algorithm computes the new search directions by using a specific kernel function. The convergence of the algorithm is shown and it is proved that the algorithm has the same iteration bound as the best short-step algorithms. We demonstrate the computational efficiency of the proposed algorithm by testing some Netlib problems in standard form. To best our knowledge, this is the first wide neighborhood path-following interior-point method with the same complexity as the best small neighborhood path-following interior-point methods that uses the kernel function.

  相似文献   

19.
Solving semidefinite-quadratic-linear programs using SDPT3   总被引:3,自引:1,他引:2  
 This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-type predictor-corrector variants of interior-point methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported. Received: March 19, 2001 / Accepted: January 18, 2002 Published online: October 9, 2002 Mathematics Subject Classification (2000): 90C05, 90C22  相似文献   

20.
《Optimization》2012,61(7):1577-1591
We present an infeasible interior-point algorithm for symmetric linear complementarity problem based on modified Nesterov–Todd directions by using Euclidean Jordan algebras. The algorithm decreases the duality gap and the feasibility residual at the same rate. In this algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem. Each main iteration of the algorithm consists of a feasibility step and a number of centring steps. The starting point in the first iteration is strictly feasible for a perturbed problem. The feasibility steps lead to a strictly feasible iterate for the next perturbed problem. By using centring steps for the new perturbed problem, a strictly feasible iterate is obtained to be close to the central path of the new perturbed problem. Furthermore, giving a complexity analysis of the algorithm, we derive the currently best-known iteration bound for infeasible interior-point methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号