首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高浓度纤维增强材料介电特性计算方法   总被引:2,自引:0,他引:2       下载免费PDF全文
廖意  蔡昆  张元  王晓冰 《物理学报》2016,65(2):24102-024102
针对复合材料的微观结构非均匀和各向异性特点带来的数值方法计算慢、内存消耗大的问题,利用均匀化方法计算纤维增强复合材料的等效电磁参数.采用了纤维低体积添加比至高体积添加比的迭代方法,同时提出了一个描述材料微观结构的修正的特征长度,将现有的均匀化方法推广至非准静态(微波频段)条件下高纤维浓度情况.提出的修正的均匀化模型可直接用于反射系数、屏蔽效能等计算,其屏蔽效能与实际微观结构复合材料的数值仿真结果进行了对比,验证了提出的等效电磁参数计算公式的有效性和频率适用范围.  相似文献   

2.
The sodium counterion (Na+) of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant was exchanged with calcium Ca2+ to investigate the counterion charge effect on the structure of water in normal decane microemulsions. Ohmic conductivity and dielectric permittivity measurements were performed on samples at constant water to surfactant mole ratio [water]/[Ca(AOT)(2)]=26.6. Increasing the volume fraction of the dispersed phase phi, a percolation phenomenon was observed at the constant temperature of 25 degrees C. The percolation threshold was found at phi approximately 15% by Ohmic conductivity and static dielectric permittivity studied as a function of phi, and by the frequency dependence of the complex permittivity. Critical exponents typical of the static percolation mechanism (formation of bicontinuous microemulsions) were found below and above threshold. The comparison of these results obtained for the two different counterions, Ca2+ and Na+, in AOT surfactant water in normal decane microemulsions allows detection of an important difference. The percolation below threshold is dynamic for the sodium-based microemulsions, accounting for the formation of clusters of droplets, whereas calcium-based microemulsions show a static percolation. For this system, the coalescence of droplets begins to occur below threshold at phi approximately 12%.  相似文献   

3.
《Physica A》1988,154(1):34-60
The asymptotic dynamics of the percolation model for a bond disordered lattice is studied. The velocity autocorrelation function (VACF) is investigated for arbitrary concentration of disorder in two and three dimensions using an effective medium approximation (EMA). Corrections to the long time tails away from the percolation threshold and to the percolation tails at the threshold are calculated. A characteristic time scale for the long time tails is identified and found to diverge at the threshold. Sufficiently close to the threshold the two types of asymptotic dynamics can be identified clearly for times greater than and less than this characteristic time, respectively. An approximate scaling of the EMA equation is obtained near the threshold for investigation of the crossover region. More generally, the EMA equation is solved numerically for arbitrary concentration in two dimensions to exhibit the complete time dependence of the VACF in all domains near and far from the threshold.  相似文献   

4.
The permittivity and permeability of composites filled with CrO2 powder are measured within the frequency range from 0.05 to 12 GHz. A sharp line of magnetic absorption is detected near 8 GHz. The effects of magnetic bias and remanence on the permittivity and permeability spectra are analyzed. The hysteretic behavior of dynamic permeability is observed for both parallel and perpendicular bias orientations relative to the microwave magnetic field. The effect is due to switching of the magnetic texture under bias equal to coercive field. At 50 MHz the parallel bias close to coercive field affects permeability much stronger than the perpendicular one. At 10 GHz the effect of perpendicular bias is higher than that of the parallel one. The effect of remanence on the microwave permeability is negligible. The 3 kOe parallel bias suppresses the line of magnetic absorption and decreases the conductivity of the composite and its microwave permittivity. This can be attributed to the magnetostatic interaction of inclusions in the vicinity of the percolation threshold.  相似文献   

5.
We review theoretical and experimental studies of the AC dielectric response of inhomogeneous materials, modelled as bond percolation networks, with a binary (conductor-dielectric) distribution of bond conductances. We first summarize the key results of percolation theory, concerning mostly geometrical and static (DC) transport properties, with emphasis on the scaling properties of the critical region around the percolation threshold. The frequency-dependent (AC) response of a general binary model is then studied by means of various approaches, including the effective-medium approximation, a scaling theory of the critical region, numerical computations using the transfer-matrix algorithm, and several exactly solvable deterministic fractal models. Transient regimes, related to singularities in the complex-frequency plane, are also investigated. Theoretical predictions are made more explicit in two specific cases, namely R-C and RL-C networks, and compared with a broad variety of experimental results, concerning, for example, granular composites, thin films, powders, microemulsions, cermets, porous ceramics and the viscoelastic properties of gels.  相似文献   

6.
卢明明  袁杰  温博  刘甲  曹文强  曹茂盛 《中国物理 B》2013,22(3):37701-037701
We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The formation of network plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.  相似文献   

7.
The effect of carbon filler on the electrical resistance and the thermopower of copper oxide-based composites produced by ceramic technology by hot pressing has been studied. It is found that the dependences of the electrical resistivity on the filler concentration are characteristic by S-like curves that are typical of percolation systems; in this case, the resistivity decreases more substantially as the carbon content increases as compared to the decrease in thermopower value, which is accompanied by the existence of the maximum of the factor of thermoelectric power near the percolation threshold. The studies of the temperature dependences of the resistivity and the thermopower at low temperatures show that, in the range 240–300 K, the predominant mechanism of the electrotransfer of all the composites under study is the hopping mechanism. At temperatures lower than 240 K, the composites with a nanocrystalline CuO matrix have a hopping conductivity with a variable hopping distance over localized states of the matrix near the Fermi level, which is related to the conductivity over intergrain CuO boundaries. A schematic model of the band structure of nanocrystalline CuO with carbon filler is proposed on the base of the analysis of the found experimental regularities of the electrotransfer.  相似文献   

8.
Carbon nanotubes (CNTs) are incorporated into the Cu–Cr matrix to fabricate bulk CNT/Cu–Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu–Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.  相似文献   

9.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

10.
In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10−5 Sm−1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.  相似文献   

11.
ABSTRACT

We present a novel approach for calculating the static dielectric permittivity profile of a liquid–liquid interface (LLI) from molecular dynamics simulations. To obtain well-defined features, comparable to those observed at solid–liquid interfaces, we find it essential to reference to the instantaneous liquid–liquid interface rather than the more commonly used average Gibbs interface. We provide a coarse-grained approach for the practical definition of the instantaneous interface and present numerical results for the prototypical water/1,2-dichloroethane system. These results show that the parallel components of the dielectric permittivity tensor can be accurately extracted. In contrast, the perpendicular component does not converge to the correct bulk value at large distances from the LLI, highlighting a flaw in the regularly applied coarse-graining procedure.  相似文献   

12.
The preparation and properties of compositionally graded PbTiO3 (PT)–epoxy resin (EPR) composite thick films are reported in this study. Various graded specimens were prepared using gravity casting method by embedding PT powders into the EPR matrix. The existence of a graded structure with two distinct phases, a good intermixing, some air pores, and different morphologies, was confirmed by scanning electron microscopy micrographs. The dielectric constants of these composites have values in the range 5–12 at the frequency of ~104?Hz and about 3–13 at ~5?×?108?Hz. The composites with permittivity gradient act as a natural impedance match system in the frequency range 2–4?GHz, resulting in very low reflections. Therefore, the compositionally graded PT–EPR composite thick films are suitable as adapting impedance materials for microwave applications.  相似文献   

13.
A polymer nanohybrid material with enhanced dielectric permittivity was prepared using the fluorine‐containing polyimide (PI) 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride/4,4′‐oxydianiline (6FDA/ODA) as matrix and graphene as conductive filler in our present work. Studies on the dielectric properties of the 6FDA/ODA–graphene nanohybrid films show that the dielectric permittivity (ε) can be significantly enhanced by the layer‐by‐layer structure of graphene and the presence of fluorine also has an important influence on the improvement of ε. The percolation theory and microcapacitor model are used to explain the change of dielectric properties and a percolation threshold fc = 0.0152 (2.45 wt%) was obtained by a linear‐fit calculation.

  相似文献   


14.
An algorithm based on Voronoi tessellation and percolation theory is presented to study the diffusion of model membrane components (solutes) in the plasma membrane. The membrane is modeled as a two-dimensional space with integral membrane proteins as static obstacles. The Voronoi diagram consists of vertices, which are equidistant from three matrix obstacles, joined by edges. An edge between two vertices is said to be connected if solute particles can pass directly between the two regions. The percolation threshold, pc, determined using this passage criterion is pc approximately equal to 0.53. This is smaller than if the connectivity of edges were assigned randomly, in which case the percolation threshold pr=2/3, where p is the fraction of connected edges. Molecular dynamics simulations show that diffusion is determined by percolation of clusters of edges.  相似文献   

15.
We report results of dielectric relaxation studies of polyaniline/poly(methylmethacrylate) composites with polyaniline amount less than the percolation threshold in the frequency range of 0.1 Hz to 1 MHz and temperature range of 10 °C–170 °C. We find a significant dependence of the glass transition temperature Tg on the polyaniline amount in the composite. α and β relaxation processes relative to the PMMA matrix are also affected by the presence of polyaniline inclusion. We identify a relaxation process due to ionic conductivity and another process attributed to residual solvent. The characteristic relaxation frequency of each process and the activation energy depend on the polyaniline amount in the composite. The ac conductivity in the high frequency range is fitted to the universal power law of Jonscher characteristic of disordered materials.  相似文献   

16.
Ba4Sm9.33Ti18O54-Ag (BST-Ag) composites were prepared by a solid-state ceramic route and its dielectric properties were investigated in the vicinity of percolation threshold. The structure and microstructure of the composites were analyzed by X-ray diffraction along with optical and scanning electron microscopy observations. The effects of silver content and frequency on the dielectric properties of BST-Ag composites were studied using a LCR meter. The relative permittivity (εr) of the composite increases with silver content below the percolation limit and is in agreement with power law. A 0.14 volume fraction of silver loading increases the relative permittivity of the composite from 50 to 450 at 10 kHz. Addition of 0.15 volume fraction of silver increases the relative permittivity of the composite in the order of 105. It is found that the giant relative permittivity is almost constant for frequencies from 1 kHz to 1 MHz. This high εr composite offers the perspectives for application in electromechanical devices.  相似文献   

17.
The fabrication of high quality thin films of poly (vinylidene fluoride) embedded with multiwalled carbon nanotubes using pulsed laser deposition technique is reported. The prepared films were characterized for structural, morphology and dielectric properties. The morphology analysis revealed uniform dispersion of multiwalled carbon nanotubes throughout the polymer matrix. X-ray diffraction results suggested that the poly (vinylidene fluoride) film is in amorphous phase while addition of multiwalled carbon nanotubes showed presence of crystalline peaks in the nanocomposites films. It was interesting to note that the nanocomposite films exhibits significant enhancement of the ferroelectric β-phase as evidenced by the X-ray diffraction and Fourier transform infrared spectroscopy results. The dielectric analysis shows a remarkable enhancement in the dielectric permittivity of nanocomposites with lower loss and conductivity level. The results can be attributed to the formation of minicapacitor network and relatively higher percolation threshold in the nanocomposites.  相似文献   

18.
19.
20.
导电炭黑/硅橡胶复合材料介电常数与压应力的关系   总被引:1,自引:0,他引:1  
卜时  周进 《物理与工程》2011,21(3):59-61
以填充了导电炭黑的导电硅橡胶和绝缘硅橡胶为主体材料,分别采用质量比1:9;3:7配比进行混炼、制备,研究了压力下复合材料的介电特性.实验结果表明:在恒压下样品介电常数实部ε’随外加电场频率的增加而减小;在恒压、同频率时导电硅胶含量大的样品介电常数大;在同频率时,增大压应力,样品介电常数实部ε’都会增加,导电硅胶含量大,增幅大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号