首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Series of laterally multifluorinated heterocyclic compounds, 2-(2?,3-difluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-benzoxazole derivatives (nPF(2)PF(3)Bx), are prepared and characterised. They mainly display enantiotropic nematic mesophases with wider mesophase ranges of 12–107°C (heating process) and 22–134°C (cooling process) than the corresponding analogues. The enhanced nematic mesophase stability is achieved via slightly increasing inter-ring twist angle with inter-ring lateral fluorine substitute in biphenyl unit, as well as through improving the molecular polarity with multifluorine substitutes. Meanwhile, two inter-ring lateral fluorine atoms lead to a decrease in melting/clearing points and a wide nematic mesophase range, which makes it possible for heterocyclic mesogens nPF(2)PF(3)Bx to use in nematic liquid crystal display mixtures.  相似文献   

2.
Modifying the position and numbers of lateral fluorine substituent is a common method to design and adjust the mesophase of liquid crystal compounds. Here, a series of 2-(2,2?-difluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-5-substituted benzoxazole with both non-polar (H, CH3) and polar (NO2) groups (coded as nPF(2)PF(2)Bx) is synthesised and characterised. All of the compounds show a conspicuous inter-ring twist angle of 38° compared with corresponding reference compounds I and II which are calculated by density functional theory method, and it is interesting to note that the final compounds nPF(2)PF(2)Bx show only nematic mesophase during heating or cooling. Meanwhile, the UV-vis absorption bands and photoluminescence emission peaks both display remarkable blue-shifted. The aforementioned results reveal that lateral difluoro substituents play a key role to stable the nematic mesophase by increasing the dihedral angle of biphenyl.  相似文献   

3.
A series of 2-(3?-fluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-benzoxazole liquid crystals (coded as nPF(3)PBx) were prepared, where a lateral fluorine substituent, as well as methyl, chlorine and nitro terminal groups, was introduced into the molecules to investigate the effects of different polar substituents on the liquid crystal properties. The mesomorphic and photophysical properties were investigated. The results show that compounds nPF(3)PBx have enantiotropic mesophases; meanwhile, they exhibit UV–vis absorption bands with maxima at 323–326 nm and photoluminescence emission peaks at 389–395 nm, respectively. It is noted that nPF(3)PBx with terminal polar groups or electron-withdrawing groups (NO2, Cl) display higher clearing temperatures and wider mesophase range than those of the corresponding homologues with terminal non-polar groups or electron-donating groups (CH3, H). Meanwhile, compared with two lateral fluorine-substituted analogues containing 3,5-difluorophenyl unit, lateral monofluoro-substituted nPF(3)PBx display enhanced mesophase range both in heating and cooling except for terminal methyl-substituted compounds, as well as show obvious red-shifted UV–vis absorption bands and photoluminescence emission, which are attributed to the enhanced dipole–dipole interaction caused by increased dipole moment.  相似文献   

4.
Fluorine is widely used as a lateral substituent to modify the physical properties of liquid crystals. Here, laterally monofluorinated compounds, 2-(4?-alkoxy-2-fluorobiphenyl-4-yl)-benzoxazole derivatives (nPPF(2)Bx) bearing different substituents (H, CH3, NO2, coded as nPPF(2)BH, nPPF(2)BM and nPPF(2)BN, respectively) at 5-position, were synthesised and characterised. It is interesting to note that these only display enantiotropic nematic mesophases with mesophase ranges of 12–28°C and 13–45°C on heating and cooling for nPPF(2)BH, 46–97°C and 62–120°C for nPPF(2)BM and 82–108°C and 87–113°C for nPPF(2)BN, which are very different from the corresponding monofluorine-substituted analogue (compounds I) with enantiotropic smectic or smectic/nematic mesophases. The enhanced nematic mesophase is attributed to the reduced π–π interaction/conjugation resulting from the twisted structure of the molecule caused by the introduction of a fluorine atom into the inter-ring of the biphenyl unit. These results suggest that modification of the monofluorine substituent position is an effective method to improve the nematic mesophase in benzoxazole-liquid crystals.  相似文献   

5.
Fluorinated aromatics is generally chosen as mesogenic cores to design novel liquid crystal compounds. Here, a series of benzoxazole derivatives with laterally multifluorinated biphenyl units, 2-(3′,3-difluoro ?4′-alkoxy-1,1′-biphenyl-4-yl)-benzoxazole derivatives (coded as nPF(3)PF(3)Bx), are synthesized and characterized, where methyl and nitro moieties are selected as terminal groups to investigate the effects of different polar substituents on the liquid crystal properties. The compounds nPF(3)PF(3)Bx show enantiotropic mesophases with mesophase ranges of 0–40°C and 0–63°C on heating and cooling for hydrogen-terminated derivatives (nPF(3)PF(3)BH), 43–93°C and 54–123°C for methyl-terminated ones (nPF(3)PF(3)BM), 60–108°C and 74–152°C for nitro terminated ones (nPF(3)PF(3)BN), respectively. They exhibit photoluminescence emission peaks at 390–392 nm and UV–vis absorption bands with maxima at 327–330 nm, respectively. The results reveal that lateral multifluoro substituents lead to a decrease in melting/clearing points, while electron-withdrawing terminal nitro moiety results in increases in both melting point and mesophase range.  相似文献   

6.
Terminal vinyl-based benzoxazole liquid crystalline compounds, 2-(3-fluoro-4?-alkoxy-1,1?-biphenyl ?4-yl)-5-(2-propenyloxymethyl)-benzoxazole (nPPF(2)BP), were synthesised and their structures were confirmed by infrared (IR) spectra, proton nuclear magnetic resonance (1H-NMR) spectra, gas chromatography with electron impact-mass spectrometry (GC/EI-MS), matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry and elemental analysis (EA). The compounds show enantiotropic smectic/nematic phases with mesophase ranges are 71–97 °C and 87–136°C on heating and cooling processes for nPPF(2)BP, respectively. They give low melting points due to lateral fluoro substituent and flexible terminal 2-propenyloxymethyl chain. It is found that the compounds nPPF(2)BP with shorter alkoxy chain (n = 3, 4) exhibit a wide range of nematic mesophase, which is ascribed to enhanced π–π interaction caused by terminal vinyl moiety, whereas further elongation of the terminal alkoxy chain results in supressing nematic phase and increasing smectic mesophase. Compared with methyl terminated analogues, 2-propenyloxymethyl terminated compounds nPPF(2)BP display much lower melting points and wider or comparable mesophase range both in heating and cooling.  相似文献   

7.
A serial of chiral aromatic acid derivatives was systematically prepared to study the effect of dimeric H-bonded mesogens on liquid crystal (LC) and optical behaviours. The lateral fluoro-substituent and the chiral terminal chains were also studied for comparison. When the H-bonded mesogens changed from biphenyl or phenyl benzoate to naphthalene ring or benzene ring, the molecular length?width ratio reduced greatly, which thus led the temperature range of mesophases reduced and the phase transition decreased. The lateral fluoro-substituent, a shorter or meta-substituted terminal chain, could make the mesophase range narrowed or disappeared. Besides the chiral nematic (N*) phase, twist grain boundary C (TGBC*) phase was found in the double aromatic-ring acids with a chiral para-substituted octan-2-yloxyl group. Interestingly, the TGBC* phase could scatter away most incident light in any surface anchoring condition, and the light scattering performance exceeded any other phases of low-molecular-weight LCs known. The unusual H-boned material could be used for preparing reversible optical switches without using any polariser and any surface alignment treatment.  相似文献   

8.
Abstract

The synthesis and characterization of seven novel (R)-2-(4-substituted-phenoxy)propanonitriles are described. The propanonitriles were prepared to evaluate their potential use as thermochromics and ferroelectric dopants, as well as to determine their twist sense properties. The materials exhibit smectic and chiral nematic phases of high thermal stability; the mesogenic behaviour of the nitriles is directly related to the type of two-ring core unit employed. The effects of the different molecular geometries and polarizabilities of the liquid crystalline cores on mesophase stability are discussed, particularly in relation to other members of this series. The chiral nematic phase of the propanonitriles is assigned as having a left-handed twist sense from contact preparation studies, and this is in agreement with rules relating absolute configuration and molecular structure to helical twist sense.  相似文献   

9.
ABSTRACT

The effect of introducing a lateral methyl substitution into the previously investigated laterally neat four-ring analogues, 4-substituted phenylazo phenyl 4?-(4?-alkoxyphenylazo) benzoates (Ina–e), on their mesophase behaviour was investigated for the newly prepared five homologous series of 4-substituted phenylazo phenyl 4?-(3?-methyl-4?-alkoxyphenylazo) benzoates (IIna–e). Within each homologous series, the alkoxy group varies between 6, 8, 10, 12, 14, and 16 carbons, while the substituent, X, is a polar group that alternatively changes between the electron-donating (CH3O and CH3) groups, and the electron-withdrawing (Br and NO2) groups, including the unsubstituted homologues (IInc). Their mesophase stabilities were determined by DSC and phases identified by PLM. The results showed that independent of the alkoxy-chain length or the polarity of the substituent X, the nematic phase is predominant with relatively high stability and wide temperature ranges. All compounds show a good thermal stability in the mesophases domain, except the nitro and Br substituted derivatives bearing short alkoxy chain length. Comparison of the mesophase behaviour was also made between the present series and corresponding three-ring laterally CH3-substituted azo/ester analogues. UV-vis absorption spectra revealed that derivatives with electron donating or an electron withdrawing groups exhibited redshifts of the π→π* transition compared with unsubstituded derivative.  相似文献   

10.
A series of mesogen‐jacketed liquid crystalline polymers, poly{2,2,3,3,4,4,4‐heptafluorobutyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PF3Cm, where m is the number of carbon atoms in the alkoxy groups, and m = 1, 4, 6, and 8), the side chain of which contains a biphenyl core with a fluorocarbon substituent at one end and an alkoxy unit of varying length on the other end, were designed and successfully synthesized via atom transfer radical polymerization. For comparison, poly{butyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PC4Cm), similar to PF3Cm but with a butyl group instead of the fluorocarbon substituent, was also prepared. Differential scanning calorimetric results reveal that the glass transition temperatures (Tgs) of the two series of polymers decrease as m increases and Tgs of the fluorocarbon‐substituted polymers are higher than those of the corresponding butyl‐substituted polymers. Wide‐angle X‐ray diffraction measurements show that the mesophase structures of these polymers are dependent on the number of the carbon atoms in the fluorocarbon substituent and the property of the other terminal substituent. Polymers with fluorocarbon substituents enter into columnar nematic phases when m ≥ 4, whereas the polymer PF3C1 exhibits no liquid crystallinity. For polymers with butyl substituents, columnar nematic phases form when the number of carbon atoms at both ends of the side chain is not equal at high temperatures and disappear after the polymers are cooled to ambient temperature. However, when the polymer has the same number of carbon atoms at both ends of the side chain, a hexagonal columnar phase develops, and this phase remains after the polymer is cooled. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
ABSTRACT

In order to study the influence of lateral Br substitution on mesophase behaviour, five homologous series of 4-substituted phenylazo phenyl 4?-(3?-bromo-4?-alkoxyphenylazo) benzoates (Ina–e) have been synthesised. Within each homologous series, the alkoxy group varies from 6 to 16 carbons, while other terminal group substituents, X, are CH3O, CH3, H, Br and NO2 groups; the mesophase behaviour of these series is compared with previously prepared laterally neat analogues, 4-substituted phenylazo phenyl 4?-(4?-alkoxyphenylazo) benzoates (IIna–e) and laterally methyl analogues, 4-substituted phenylazo phenyl 4?-(3?-methyl-4?-alkoxyphenylazo) benzoates (IIIna–e). Similar to lateral methyl analogues, the present series, lateral Br substitution showed that, independent of the polarity of the substituent X or the alkoxy-chain length, the nematic phase is predominant with relatively high stability and broad temperature ranges. The mesophase stability varies between 204.0°C and 335.0°C for the nematic phase and 169.6°C and 281.0°C for the SmA phase. Their total mesophase temperature ranges vary between 87.2°C and 201.4°C. All compounds were found to be thermally stable within the mesophase temperature range, except the lower homologue of the nitro and Br substituted derivatives. The obtained results are discussed in terms of molecular polarisability.  相似文献   

12.
By modifying the molecular dipole moments with lateral monofluorine substituent, improved mesophase stabilities were obtained for novel benzoxazole derivatives, 2-(4?-alkoxy-3-fluorobiphenyl-4-yl)-benzoxazole liquid crystals (coded as nPPF(3)Bx). The series of nPPF(3)Bx with lateral monofluorine substituent ortho to benzoxazole group have larger calculated dipole moments by about 2 D than the corresponding fluorine-substituted analogs (compounds I) with lateral monofluorine ortho to alkoxy group; it is interesting to note that they show lower melting and clearing points but better mesophase stability with wider mesophase ranges for the molecules with both polar (NO2, Cl) and nonpolar (CH3, H) terminal groups. Meanwhile, compounds nPPF(3)Bx show greater red-shifted photoluminescence emissions than compounds I, which suggest that π–π interaction between molecules is reinforced by the enhanced dipole–dipole interaction caused by increased dipole moments. These results suggest that modification of the molecular dipole moment is an effective method to improve the mesophase stability of the classical mesogenic compounds.  相似文献   

13.
A series of nematic liquid crystal (LC) monomers containing a reactive group (double bonds) in the lateral substituent was designed and synthesised. Length of the lateral substituted groups that have one double bond varied from 1 to 4 methylene units. Length of the terminal substituted groups varied from 2 to 5 methylene units. The molecular structures of the intermediates and the LC monomers were characterised by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and nuclear magnetic resonance (NMR) spectroscopy. The thermal phase behaviour of the monomers was investigated by differential scanning calorimetry (DSC) and polarised optical microscopy (POM) coupled with hot stage. Some molecules (V15, V25) with high aspect ratio exhibit enantiotropic nematic mesophase. The other compounds (V12, V22, V42, V43) show monotropic nematic mesophase during cooling. The relationship between the structure and mesomorphic property is also discussed.  相似文献   

14.
Two groups of the title compounds were prepared and investigated for their mesophase formation and stability. Each group constitutes five homologous series that differ from each other by the polar substituent X (CH3O, CH3, H, Cl, and NO2). Within each homologous series, the number (n) of carbons in the alkoxy chain varies between 8, 10, 12, 14 and 16. The difference between the two groups of compounds lies in the orientation protrusion of the lateral methyl group attached to the central benzene ring. In the first group (Group I) the methyl substituent, introduced into the o-position with respect to the ester group, makes an angle of 60° with the long axis of the molecule. In the other series of compounds (Group II), the orientation angle is 120° as it is introduced into the position-3. All possible binary phase diagrams could be constructed in which the two components are corresponding positional isomers from either group. The study aimed to investigate the effect of inclusion of the lateral methyl group, as well as its spatial orientation, on the mesomorphic properties of the produced derivatives in their pure and mixed states. The compounds prepared in both groups were characterised for their mesophase behaviour by differential scanning calorimetry and polarised light microscopy. The nematic phase is the mesophase observed in most of the compounds prepared and their binary mixtures.  相似文献   

15.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

16.
The synthesis and characterization of seven novel (R)-2-(4-substituted-phenoxy)propanonitriles are described. The propanonitriles were prepared to evaluate their potential use as thermochromics and ferroelectric dopants, as well as to determine their twist sense properties. The materials exhibit smectic and chiral nematic phases of high thermal stability; the mesogenic behaviour of the nitriles is directly related to the type of two-ring core unit employed. The effects of the different molecular geometries and polarizabilities of the liquid crystalline cores on mesophase stability are discussed, particularly in relation to other members of this series. The chiral nematic phase of the propanonitriles is assigned as having a left-handed twist sense from contact preparation studies, and this is in agreement with rules relating absolute configuration and molecular structure to helical twist sense.  相似文献   

17.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Galactose derivatives were explored as chiral dopants, effective for inducing chiral nematic liquid crystal (LC) phases. Galactose bearing O-isopropylidene substituents at the C3 and C4 and butoxybiphenyl substituents at the C2 and C6 positions exhibits a high helical twisting power (HTP) value of ?74.4 μm?1. Such a high HTP value for the galactose derivative is attributed to (1) linkage of the C3 and C4 carbons with the O-isopropylidene substituent, which places the C2 and C6 substitutes in a skew arrangement at a large angle and (2) enhancement of the affinity with the host nematic LCs by incorporating aromatic substituents at the C2 and C6 positions that are similar to those in the host.  相似文献   

19.
Eight homologous series of 2-(or 3-)substituted phenyl 4?-(4″-alkoxy (2?-, or 3″-substituted phenylazo) benzoates (InXY) were prepared in which the suffix ‘X’ refers to the lateral substituent X attached to the terminal benzene ring that carries the alkoxy group, and the suffix ‘Y’ refers to the substituent attached to the other terminal phenyl group. Within each homologous series, the length of the terminal alkoxy group varies from 8 to 16 carbons, while the lateral polar substituents, X and Y, alternatively varies between CH3 and F. The mesophase behaviour was investigated by differential scanning calorimetry and identified by polarised optical microscopy. The results were discussed in terms of the polarity and steric effects of the two lateral substituents. Comparative correlations were made to investigate the effect of the second lateral substituent on the mesophase behaviour of the previously investigated mono-laterally substituted analogues. UV–vis spectroscopic study revealed that the compounds I8XY exhibited two absorption bands: low intense bands at 254–263 and a broad band at 364–376 nm. These bands are attributed to the π–π? transition of the phenyl rings and the whole mesogenic portion.  相似文献   

20.
Four new groups of 4-((2?-substitutedphenylimino)methyl)phenyl-4”-alkoxy benzoates, Ina-d, of Schiff base ester liquid crystals, were prepared and investigated for their mesophase formation and stability. Each group constitutes four homologous series that differ from each other by the lateral attached polar group X in the ortho position for the imine mesogen at terminal benzene ring that alternatively changed from F, Br, NO2 and lateral benzene ring. Within each homologous series, the number (n) of carbons in the alkoxy chain varies between 6, 8, 10 and 12. Molecular structures of the prepared compounds were confirmed via elemental analysis, FT-IR, and 1H NMR spectroscopy. Mesomorphic properties were investigated by differential scanning calorimetry (DSC) and the phase identified by polarised light microscopy (PLM). A comparative study was made between the investigated compounds and their previously prepared laterally neat, 4-((4?-phenylimino)methyl)phenyl-4”-alkoxy benzoates (IIn); the result revealed that all lateral substituents not only decrease the melting temperature but also the mesophase stability and shown only nematic phase. Density functional theory (DFT) calculations for new lateral derivatives were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号