首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

2.
ABSTRACT

A novel Y-shaped liquid crystalline epoxy with a rigid core with three flexible liquid crystalline arms (ETTPM) was synthesised and its structure was characterised by Fourier transform infrared spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. It was analysed and observed by differential scanning calorimetry, X-ray diffraction and polarised optical microscopy (POM) that the liquid crystal phase was stable on the temperature range of 107.8°C. In particular, an unusual transition phenomenon of liquid crystal phases was observed. Modified epoxy-resin-cured products were prepared using ETTPM, epoxy resin E51 and 4,4-diaminodiphenyl methane. The liquid crystalline domains in cured products were observed by researching their scattering effect on laser. Mechanical tests showed that ETTPM was effective for the mechanical properties improvement of epoxy-resin-cured products, as demonstrated in the improvement of impact strength, tensile strength and tensile elasticity modulus. The impact fracture cross-sections and surface morphologies were studied further by POM and scanning electron microscopy (SEM). Crack deformation, crack split and notable plastic deformations were found in modified epoxy-resin-cured products, and these factors played important roles in improving the impact strength.  相似文献   

3.
Epoxy/clay nanocomposites with a high degree of exfoliation were achieved by intercalating liquid crystalline epoxy into clay intragallery as well as using a so-called ‘solution compounding’ process. In this process, clay modified was first treated with trichloromethane to form organoclay-trichloromethane suspension followed by liquid crystalline epoxy modification. The liquid crystalline epoxy grafted clay was then mixed extensively with epoxy to form epoxy/nanoclay composites. The mechanism of exfoliation was explored by monitoring the change of morphology of organoclay during each stage of processing with X-ray diffraction (XRD). The liquid crystalline epoxy grafted clay synthesised was characterised by fourier transform infrared spectroscopy (FT-IR) and polarising optical microscopy (POM). The clay platelets uniformly dispersed and highly exfoliated in the whole epoxy matrix were observed using transmission electron microscopy (TEM) and FT-IR imaging system. The epoxy nanocomposites were fabricated by incorporating different liquid crystalline epoxy grafted clay loading. The results revealed that the incorporation of liquid crystalline epoxy grafted clay resulted in a significant improvement in glass transition temperature (Tg) derived from dynamic mechanical analysis (DMA) and thermal stability measured by thermogravimetric analysis (TGA).  相似文献   

4.
This article describes the synthesis of a liquid crystalline curing agent 4,4′-bis-(4-amine-butyloxy)-biphenyl (BABB), and its application as a curing agent for the epoxy resin (DGEBA) in comparison with normal curing agent, 4,4′-diaminobiphenyl (DABP). BABB was investigated with polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scatting, and the results showed that BABB displayed smectic liquid crystalline phase. The curing behaviors of DGEBA cured with BABB and DABP were studied by using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and dynamic mechanical analysis (DMA). The results indicated that BABB showed a higher chemical reactivity than DABP. The kinetics was studied under isothermal conditions using an isoconversional method, and the isothermal DSC data can be fitted reasonably by an autocatalytic curing model. The nematic droplet texture was observed for the resulting polymer network of DGEBA/BABB system, while the DGEBA/DABP system showed an isotropic state. The storage modulus of DGEBA/BABB system was enhanced in comparison with DGEBA/DABP system because of the formation of LC phase, whereas the glass transition temperatures decreased because of the introduction of flexible spacer group.  相似文献   

5.
The present work investigates the improvement in mechanical properties observed for commercially available diglycidyl ethers of bisphenol-A (DGEBA) with the incorporation of a new type of skeletal modified tetra glycidyl epoxy resin TGBAPB as modifier. Varying weight percentages of TGBAPB have been blended with DGEBA and cured with diaminodiphenylmethane (DDM). The chemical structure of TGBAPB was confirmed by FTIR, NMR, and molecular weight determination was carried out by ESI-MS spectroscopic techniques. The thermal properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and mechanical properties like tensile strength, flexural strength, impact strength were also studied by universal testing machine (UTM). Scanning electron microscopy (SEM) investigates the morphological behavior of the neat and blend epoxy resins. The results from different studies indicate that the blend epoxy resin system “B” comprising 75% DGEBA/25% TGBAPB has shown improvements in both toughness and stiffness, despite the fact that it is often found that the enhancement of these two properties together in a material cannot be simultaneously achieved. These aspects of this work are novel.  相似文献   

6.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

7.
An intercrosslinked network of cyanate ester (CE)-bismaleimide (BMI) modified epoxy matrix system was made by using epoxy resin, 1,3-dicyanatobenzene and bismaleimide (N,N-bismaleimido-4,4-diphenyl methane) with diaminodiphenylmethane as curing agent. BMI-CE-epoxy matrices were characterised using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. The matrices, in the form of castings, were characterised for their mechanical properties such as tensile strength, flexural strength and unnotched Izod impact test as per ASTM methods. Mechanical studies indicated that the introduction of cyanate ester into epoxy resin improves the toughness and flexural strength with reduction in tensile strength and glass transition temperature, whereas the incorporation of bismaleimide into epoxy resin influences the mechanical and thermal properties according to its percentage content. DSC thermograms of cyanate ester as well as BMI modified epoxy resin show an unimodal reaction exotherm. Electrical properties were studied as per ASTM method and the morphology of the BMI modified epoxy and CE-epoxy systems were studied by scanning electron microscope.  相似文献   

8.
Diglycidyl ether of bisphenol A epoxy resin (DGEBA, LY 556) was toughened with 5%, 10% and 15% (by wt) of caprolactam blocked methylenediphenyl diisocyanate (CMDI) using 4,4′-diaminodiphenylmethane (DDM) as curing agent. The toughened epoxy resin was further modified with chemical modifier N,N′-bismaleimido-4,4′-diphenylmethane (BMI). Caprolactam blocked methylenediphenyl diisocyanate was synthesized by the reaction of caprolactam with methylenediphenyl diisocyanate in presence of carbon tetrachloride under nitrogen atmosphere. Thermal properties of the developed matrices were characterized by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), heat distortion temperature (HDT) and dynamic mechanical analysis (DMA). Mechanical properties like tensile strength, flexural strength and impact strength were tested as per ASTM standards. The glass transition temperature (Tg) and thermal stability were decreased with increase in the percentage incorporation of CMDI. The thermomechanical properties of caprolactam blocked methylenediphenyl diisocyanate toughened epoxy resin were increased by increasing the percentage incorporation of bismaleimide. The values of impact strength for epoxy resin were increased with increase in the percentage concentration of CMDI. The homogeneous morphology of CMDI toughened epoxy resin and bismaleimide modified CMDI toughened epoxy resin system were ascertained from scanning electron microscope (SEM).  相似文献   

9.
A novel renewable resource based tri-functional epoxy resin from itaconic acid (TEIA) was blended with petroleum based epoxy resin (DGEBA) and fabricated at different ratios. Then, it was by thermally cured with methylhexahydrophthalic anhydride (MHHPA) in presence of 2-methylimidazole (2-MI) catalyst. The tensile, modulus, strength of virgin epoxy resin (41.97 MPa, 2222 MPa) increased to 47.59 MPa, 2515 MPa, respectively, with the addition of 30% of TEIA. The fracture toughness parameter, critical stress intensity factor (KIC) revealed enhancement of toughness in the TEIA bio-based blends system. The thermomechanical properties of TEIA (tri-functional epoxy resin from itaconic acid) modified petroleum-epoxy networks were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The fracture morphology was also studied by the scanning electron microscopy and atomic force microscopy respectively.  相似文献   

10.
一种液晶环氧增韧环氧树脂的研究   总被引:16,自引:0,他引:16  
环氧树脂具有优异的机械性能 ,耐高温以及良好的加工工艺性 .被广泛用于机械、航天、船舶等领域 .由于环氧树脂固化后断裂延伸率小 ,脆性大 ,使其应用受到了一定的限制 .为此 ,国内外学者对环氧树脂进行了大量的改性研究工作 .用含有“柔性链段”的固化剂固化环氧 ,在交联网络中引入柔性链段[1] ;在环氧基体中加入橡胶弹性体[2 ] 、热塑性树脂[3 ,4] 、液晶聚合物[5,6] 等分散相或用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构[7] ,以改善环氧树脂的韧性 .本文采用液晶环氧化合物原位复合增韧环氧树脂 ,考察了液晶环氧对环…  相似文献   

11.
Four new epoxy monomers have been synthesized and characterized as part of a program to prepare novel liquid crystal thermoset (LCT) materials. Three of the new epoxy monomers contained a biphenyl mesogen and were not liquid crystalline (LC). The remaining epoxy monomer, which contained a 1,4-dibenzoyloxybenzene mesogen, was synthesized in an overall yield of 30% and displayed a broad (83°C) nematic liquid crystalline phase. The new liquid crystalline epoxy monomer was cured at 120°C and postcured at 175°C with a stoichiometric amount of 1,4-phenylenediamine. The thermal transitions of the resulting LCT were studied by differential scanning calorimetry (DSC), polarized light optical microscopy (POM), thermomechanical analysis (TMA), and wide angle x-ray diffraction (WAXD) as a function of cure time and temperature. A process characterization diagram was constructed which shows that LCTs based on this new LC monomer can be processed in the liquid crystalline phase over a broad range of times and temperatures. Qualitative agreement with previous epoxy LCT results was found, as LCT's with smectic phases and without clearing temperatures were observed at long cure times (high crosslink densities), whereas nematic phases with clearing temperatures predominated in networks at short cure times (low crosslink densities). © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The evolution of structure, and thermal and dynamic mechanical properties of a liquid crystalline epoxy during curing has been studied with differential scanning calorimetry (DSC), polarized optical microscopy, x-ray scattering, and dynamic mechanical analysis. The liquid crystalline epoxy was the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene (DGEDHMS). Two curing agents were used in this study: a di-functional amine, the aniline adduct of DGEDHMS, and a tetra-functional sulfonamido amine, sulfanilamide. The effects of curing agent, cure time, and cure temperature have been investigated. Isothermal curing of the liquid crystalline epoxy with the di-functional amine and the tetra-functional sulfonamido amine causes an increase in the mesophase stability of the liquid crystalline epoxy resin. The curing also leads to various liquid crystalline textures, depending on the curing agent and cure temperature. These textures coarsen during the isothermal curing. Moreover, curing with both curing agents results in a layered structure with mesogenic units aligned perpendicular to the layer surfaces. The layer thickness decreases with cure temperature for the systems cured with the tetra-functional curing agent. The glass transition temperature of the cured networks rises with increasing cure temperature due to the increased crosslink density. The shear modulus of the cured networks shows a strong temperature dependence. However, it does not change appreciably with cure temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2363–2378, 1997  相似文献   

13.
A novel Ag/C nanocable and epoxy resin composite was obtained by compounding Ag/C nanocables and epoxy resin. The nanocable is composed of a nanowire (core) wrapped with one or more outer layers (shell). Scanning electron microscopy images proved that the nanocables consisted of a silver nanowire core and a carbon outer shell. The Ag/C nanocables were modified by hyperbranched poly (amine ester) to improve their mechanical properties for further application. We separately compounded raw and modified Ag/C nanocables with epoxy resin, and then tested the thermal performance, tensile properties, and fracture morphology of each composite. We found that the tensile strengths of the two composite systems were enhanced by the epoxy resin, with the modified (Ag/C)/epoxy resin composite system improving more significantly. Differential scanning calorimeter (DSC) results showed that the glass transition temperature of the unmodified (Ag/C)/epoxy resin composite is increased when the Ag/C nanocable is filled, while that of the modified system slightly decreased. Fracture morphology results showed that both (Ag/C)/epoxy composite systems featured increased toughness. The modified Ag/C nanocables had better compatibility with the epoxy resin. The relationship between the properties and microstructure of the composites were discussed in detail to explain the mechanism behind the observed changes in material properties.  相似文献   

14.
Polyhedral oligomeric silsesquioxane (POSS)-reinforced epoxy nanocomposites were prepared by reacting commercially available diglycidyl ether of bisphenol-A (DGEBA) and tetraglycidyl diamino diphenyl methane (TGDDM) epoxy resins with 1,1-bis(3-methyl-4-glycidyloxyphenyl)cyclohexane (Cy-Ep) separately and reinforced with POSS nanocluster. POSS (OAPS)-reinforced hybrid Cy-Ep-epoxy resin castings were characterized for their mechanical and morphological properties. The data obtained from mechanical studies indicated that the incorporation of nano OAPS into Cy-Ep modified hybrid systems results in improved stability. Among the epoxy systems studied, the TGDDM-based hybrid epoxy system exhibited higher values of tensile and flexural properties than that of the DGEBA hybrid epoxy system, whereas the impact strength of the DGEBA system was higher than that of the TGDDM system. The dispersion of POSS was confirmed by scanning electron microscopy and visual observation studies.  相似文献   

15.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

16.
The influence of the cure process and the resulting reaction‐induced phase separation (RIPS) on the crystallization and melting behavior of polyoxymethylene (POM) in epoxy resin diglycidylether of bisphenol A (DGEBA) blends has been studied at different cure temperatures (180 and 145 °C). The crystallization and melting behavior of POM was studied with DSC and the simultaneous blend morphology changes were studied using OM. At first, the influence of the epoxy monomer on the dynamically crystallized POM was investigated. Secondly, a cure temperature above the melting point of POM (Tcure = 180 °C) was applied for blends with curing agent to study the influence of resulting phase morphology types on the crystallization behavior of POM in the epoxy blends. Large differences between particle/matrix and phase‐inverted structures have been observed. Thirdly, the cure temperature was lowered below the melting temperature of POM, inducing isothermal crystallization prior to RIPS. As a consequence, a distinction was made between dynamically and isothermally crystallized POM. Concerning the dynamically crystallized material, a clear difference could be made between the material crystallized in the homogeneous sample and that crystallized in the phase‐separated structures. The isothermally crystallized POM was to a large extent influenced by the conversion degree of the epoxy resin. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2456–2469, 2007  相似文献   

17.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   

18.
Polybutadiene-block-epoxy prepolymer (DGEBA-b-PBNCO) copolymers with multi-branched topological structure were prepared by reacting isocyanate-multifunctionalized liquid polybutadiene (PBNCO) with DGEBA prepolymer and used to develop nanostructured rubber-modified epoxy thermosets cured with triethylene-tetramine (TETA) as the aliphatic amine. The nanoscopic structure was obtained with the addition of as high as 20 phr of rubber component and successfully demonstrated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The glass transition temperature of the rubber-modified epoxy networks was slightly higher than the neat epoxy system. In addition, a unique combination of outstanding toughness and increased modulus and T(g) was achieved in these modified systems, which was attributed to the peculiar morphology associated with a strong interfacial adhesion imparted by the reaction between the isocyanate and hydroxyl groups present in the PBNCO and epoxy resin, respectively. The effect of the PBNCO on the gelation time of the epoxy/TETA system was investigated by rheological techniques. The NCO-functionalized polybutadiene decreased the gelation time, indicating an accelerating effect on the curing process, probably because of the urethane groups formed by the reaction between PBNCO and the epoxy resin during the PB-b-ER block copolymer preparation.  相似文献   

19.

In the present study, TEIA bioresin was blended with the diglycidyl ether bisphenol A (DGEBA) epoxy resin in different ratios (i.e. 10, 20, 30, 40 mass%), cured with methylhexahydrophthalic anhydride curing agent in the presence of 2-methylimidazole catalyst. The optimized composition of DGEBA and TEIA bioresin blends system was employed as an adhesive strength. The adhesive strength of the TEIA-modified DGEBA epoxy resin blend system was increased from 4.14 to 6.31 MPa on an aluminium substrate compared to the DGEBA epoxy resin. The curing kinetics of non-isothermal, DGEBA epoxy resin and its bio-based blend systems were investigated employing differential scanning calorimetry. An increase in the peak temperature and reduction in a heat of curing as well as activation energy in DGEBA epoxy resin were observed with the addition of TEIA bioresin content. The activation energy (Ea) of the DGEBA resin and their bio-based blend system were obtained from Kissinger and Flynn–Wall–Ozawa methods.

  相似文献   

20.
Siliconized epoxy matrix resin was developed by reacting diglycidyl ethers of bisphenol A (DGEBA) type epoxy resin with hydroxyl terminated polydimethylsiloxane (silicone) modifier, using γ-aminopropyltriethoxysilane crosslinker and dibutyltindilaurate catalyst. The siliconized epoxy resin was cured with 4, 4-diaminodiphenylmethane (DDM), 1,6-hexanediamine (HDA), and bis (4-aminophenyl) phenylphosphate (BAPP). The BAPP cured epoxy and siliconized epoxy resins exhibit better flame-retardant behaviour than DDM and HDA cured resins. The thermal stability and flame-retardant property of the cured epoxy resins were studied by thermal gravimetric analysis (TGA) and limiting oxygen index (LOI). The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC) and the surface morphology was studied by scanning electron microscopy (SEM). The heat deflection temperature (HDT) and moisture absorption studies were carried out as per standard testing procedure. The thermal stability and flame-retardant properties of the cured epoxy resins were improved by the incorporation of both silicone and phosphorus moieties. The synergistic effect of silicone and phosphorus enhanced the limiting oxygen index values, which was observed for siliconized epoxy resins cured with phosphorus containing diamine compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号