首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
介绍了14支路并联的300 kA百ns直线型变压器驱动源单级模块的结构和关键部件。模块通过采用双端引出电极电容器以及小型多间隙串联气体火花开关,可以并联更多的支路数,减小回路电感,提高储能密度;通过采用非晶磁芯,减小磁芯损耗,提高模块耦合效率。实验研究了初级气体开关工作系数对模块输出的影响,实验结果表明:模块开关电压工作系数达到0.7,多间隙串联开关才能较好同步放电;给出了快直线型变压器模块的初步调试实验结果,在模块充电90 kV,开关气压0.32 MPa情况下,匹配负载电流峰值可达到302 kA,上升时间约100 ns,负载上获得的峰值功率为23 GW。  相似文献   

2.
介绍了14支路并联的300 kA百ns直线型变压器驱动源单级模块的结构和关键部件。模块通过采用双端引出电极电容器以及小型多间隙串联气体火花开关,可以并联更多的支路数,减小回路电感,提高储能密度;通过采用非晶磁芯,减小磁芯损耗,提高模块耦合效率。实验研究了初级气体开关工作系数对模块输出的影响,实验结果表明:模块开关电压工作系数达到0.7,多间隙串联开关才能较好同步放电;给出了快直线型变压器模块的初步调试实验结果,在模块充电90 kV,开关气压0.32 MPa情况下,匹配负载电流峰值可达到302 kA,上升时间约100 ns,负载上获得的峰值功率为23 GW。  相似文献   

3.
介绍了4支路并联快前沿直线脉冲变压器驱动源(FLTD)模块的初步实验结果,在工作电压160 kV时,次级短路放电电流幅值达到103.4 kA,电流前沿为78 ns(10%~90%)。利用微分环测量了4只开关在工作电压120 kV时的同步情况,研究分析了开关同步对放电电流幅值和波形的影响。开关同步小于15ns时,放电电流幅值变化不明显,电流幅值的标准偏差约3.62 kA,电流波形没有明显畸变;开关同步15~25ns时,放电电流幅值略有下降,电流幅值的标准偏差约8.59 kA,电流波形有一定程度畸变;开关同步大于25ns时,放电电流幅值明显降低,电流的标准偏差显著增大,电流波形发生严重畸变。  相似文献   

4.
介绍了4支路并联快前沿直线脉冲变压器驱动源(FLTD)模块的初步实验结果,在工作电压160 kV时,次级短路放电电流幅值达到103.4 kA,电流前沿为78 ns(10%~90%)。利用微分环测量了4只开关在工作电压120 kV时的同步情况,研究分析了开关同步对放电电流幅值和波形的影响。开关同步小于15 ns时,放电电流幅值变化不明显,电流幅值的标准偏差约3.62 kA,电流波形没有明显畸变;开关同步15~25 ns时,放电电流幅值略有下降,电流幅值的标准偏差约8.59 kA,电流波形有一定程度畸变;开关同步大于25 ns时,放电电流幅值明显降低,电流的标准偏差显著增大,电流波形发生严重畸变。  相似文献   

5.

为了提高多间隙气体开关壳体的寿命、绝缘可靠性和装配的一致性,基于堆栈式多间隙气体开关开展了陶瓷封装多间隙气体开关工艺及击穿特性的研究。对比分析了不同封接工艺对陶瓷金属界面场分布的影响,优选了合理的封接结构。研制了用于FLTD的陶瓷封装多间隙气体开关并对其自击穿特性和触发特性开展了测试,结果表明:开关充干燥空气气压0.3 MPa、耐压±100 kV、峰值电流约30 kA条件下,5 000次放电的触发平均时延36.4 ns,抖动2.8 ns。该结果展示了陶瓷封装气体开关在产品化和免维护方面的优势,在FLTD模块中具有广阔应用前景。

  相似文献   

6.
针对800 kA,0.1 Hz重复频率LTD模块设计新的多间隙气体开关,要求在较高工作电压(高于80 kV)和较低工作系数(低于70%)下抖动优于2 ns。通过电场仿真分析,优化了气体开关电极形状。串联间隙从4个增加为6个,总间隙长度为36 mm,充电100 kV、触发100 kV时触发间隙场畸变系数为3.98。实验表明,新气体开关静态自击穿性能稳定,动态触发性能可靠。充电90 kV、工作系数60%时击穿延时40.1 ns,抖动1.3 ns。  相似文献   

7.
针对800 kA,0.1 Hz重复频率LTD模块设计新的多间隙气体开关,要求在较高工作电压(高于80 kV)和较低工作系数(低于70%)下抖动优于2 ns。通过电场仿真分析,优化了气体开关电极形状。串联间隙从4个增加为6个,总间隙长度为36 mm,充电100 kV、触发100 kV时触发间隙场畸变系数为3.98。实验表明,新气体开关静态自击穿性能稳定,动态触发性能可靠。充电90 kV、工作系数60%时击穿延时40.1 ns,抖动1.3 ns。  相似文献   

8.
根据已有的实验数据和理论,给出了抖动和延时的数值表示,利用Matlab软件生成随机数组模拟开关延时和抖动。在Simulink环境下建立简化模型仿真多子块并联直线型变压器驱动源(LTD)模块的工作特性。通过M文件控制模块内多个开关的击穿时序仿真开关抖动,分析开关抖动对40个支路并联输出电流1 MA、上升时间100 ns的LTD模块输出功率峰值及前沿的影响。模拟结果表明,在一定范围内,随着抖动增大,LTD模块输出功率峰值减小,脉冲前沿显著增加,系统的稳定性随抖动增加而降低。随着开关抖动增大,输出到负载的峰值功率减小的速率增大,而脉冲前沿近似于线性增加。由于开关抖动将影响负载输出,为满足一定的系统可靠性要求,存在一个抖动阈值,对于40个子块并联的1 MA LTD模块,在系统可靠性要求5%时,其抖动阈值约为17 ns。  相似文献   

9.
根据已有的实验数据和理论,给出了抖动和延时的数值表示,利用Matlab软件生成随机数组模拟开关延时和抖动。在Simulink环境下建立简化模型仿真多子块并联直线型变压器驱动源(LTD)模块的工作特性。通过M文件控制模块内多个开关的击穿时序仿真开关抖动,分析开关抖动对40个支路并联输出电流1 MA、上升时间100 ns的LTD模块输出功率峰值及前沿的影响。模拟结果表明,在一定范围内,随着抖动增大,LTD模块输出功率峰值减小,脉冲前沿显著增加,系统的稳定性随抖动增加而降低。随着开关抖动增大,输出到负载的峰值功率减小的速率增大,而脉冲前沿近似于线性增加。由于开关抖动将影响负载输出,为满足一定的系统可靠性要求,存在一个抖动阈值,对于40个子块并联的1 MA LTD模块,在系统可靠性要求5%时,其抖动阈值约为17 ns。  相似文献   

10.
 利用通用电路模型程序Pspice,建立了包含60级感应腔串联的单路直线型脉冲变压器(LTD)电路模型,次级传输线采用去离子水绝缘,计算分析了感应腔触发时序对LTD输出参数的影响。结果表明,控制触发时序能够显著改变LTD型驱动源的输出参数。当控制触发时序使得各级感应腔内的开关在闭合前承受一定过电压时,LTD输出电流比单级感应腔同等条件下的输出电流具有更短前沿和更高幅值。假定LTD开关过压击穿电压为400 kV,通过触发时序的优化可提高LTD装置输出性能:前沿从56.5 ns减少至12.5 ns,峰值从1 018 kA提高至1 340 kA。  相似文献   

11.
针对12支路并联的快前沿直线脉冲变压器单级模块,给出了模块的电路结构和关键器件参数,实验获得了12只多间隙气体开关的自击穿特性和触发特性。同时,还给出了快前沿直线脉冲变压器模块输出电流的初步实验结果,工作电压150 kV时,次级短路放电电流幅值为235 kA,电流前沿88.2 ns(10%~90%)。次级带0.58 负载情况下,输出电流幅值114.5 kA,电流前沿88.9 ns(10%~90%)。利用微分环测量了12只开关的触发时延分散性,结果表明100次实验开关触发时延分散性近似符合正态分布,开关触发时延分散性对输出电流的影响不大,电流幅值和前沿的标准偏差分别小于2.0%,4.0%,电流波形的畸变主要以平顶为主。  相似文献   

12.
电晕针均压的多间隙气体开关,其各间隙电晕电流一致性会直接影响开关的耐压稳定性。在工作气压0.1,0.2,0.3,0.4 MPa条件下,实验测量了六间隙气体开关在不同电压下的各间隙电晕电流。结果显示,针-板间隙电晕电流明显高于针-杆间隙电晕电流。对针-板间隙进行结构调整并进行三维静电场仿真。对调整结构后的针-板间隙进行电晕电流测试,测试数据的变化趋势与仿真结果相符。基于实验和仿真结果,优化了针-板间隙中电晕针的高度,充电25 kV时,开关各间隙电晕电流的相对标准偏差最大为8%。  相似文献   

13.
介绍了输出电流幅值为1 MA,电流上升时间为100 ns的快脉冲直线型变压器驱动源(LTD)模块的设计。模块由48个子块并联组成,每个子块由2个电容器和一个多级气体开关串联组成。48个开关由8路高压脉冲触发,每路高压脉冲(100 kV/50 ns)触发6个开关。电路模拟显示,在充电90 kV条件下,输出电流幅值为1.04 MA,电流上升时间为84.5 ns(0~100%)和52 ns(10%~90%)。电路模拟时的参数设置以实验数据为基础,开关的工作条件与已研制成功的100 kA-LTD模块中的开关工作条件近似,模块设计工作于腔体注油状态以保证高压运行安全,能够保证模块达到设计要求。  相似文献   

14.
介绍了输出电流幅值为1 MA,电流上升时间为100 ns的快脉冲直线型变压器驱动源(LTD)模块的设计。模块由48个子块并联组成,每个子块由2个电容器和一个多级气体开关串联组成。48个开关由8路高压脉冲触发,每路高压脉冲(100 kV/50 ns)触发6个开关。电路模拟显示,在充电 90 kV条件下,输出电流幅值为1.04 MA,电流上升时间为84.5 ns(0~100%)和52 ns(10%~90%)。电路模拟时的参数设置以实验数据为基础,开关的工作条件与已研制成功的100 kA-LTD模块中的开关工作条件近似,模块设计工作于腔体注油状态以保证高压运行安全,能够保证模块达到设计要求。  相似文献   

15.
介绍了用于Z箍缩驱动器的快脉冲直线型变压器驱动源(LTD)原型模块设计和初步实验结果。该模块采用32个子块并联,每个子块由两台100 kV/100 nF脉冲电容器和一只200 kV多间隙气体开关串联组成。32只开关由4路高压脉冲分别触发。模块直径为2.9 m,厚度约27 cm。电路模拟结果表明,在90 kV充电电压下,输出电流幅值为1.0 MA,电流上升时间(10%~90%)约118.6 ns。初步实验结果表明,在约90 m近似匹配电阻负载上获得的电流为995 kA,上升时间(10%~90%)为120.8 ns,脉冲宽度约335.2 ns。实验结果与电路模拟结果较为接近。  相似文献   

16.
介绍了用于Z箍缩驱动器的快脉冲直线型变压器驱动源(LTD)原型模块设计和初步实验结果。该模块采用32个子块并联,每个子块由两台100kV/100nF脉冲电容器和一只200kV多间隙气体开关串联组成。32只开关由4路高压脉冲分别触发。模块直径为2.9m,厚度约27cm。电路模拟结果表明,在±90kV充电电压下,输出电流幅值为1.0MA,电流上升时间(10%~90%)约118.6ns。初步实验结果表明,在约90mΩ近似匹配电阻负载上获得的电流为995kA,上升时间(10%~90%)为120.8ns,脉冲宽度约335.2ns。实验结果与电路模拟结果较为接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号