首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(P)-(+)-Hexaspiro[2.0.0.0. 0.0.2.1.1.1.1.1]pentadecane [(P)-17] as well as (M)-(-)- and (P)-(+)-octaspiro[2.0.0.0.0.0.0.0.2.1.1.1.1.1.1.1]nonadecanes [(M)- and (P)-25]-enantiomerically pure unbranched [7]- and [9]triangulanes-have been prepared starting from racemic THP-protected (methylenecyclopropyl)methanol 6. The relative configurations of all important intermediates as well as the absolute configurations of the key intermediates were established by X-ray crystal structure analyses. This new convergent approach to enantiomerically pure linear [n]triangulanes for n=7, 9 was also tested in two variants towards [15]triangulane. Some of the most prominent and unexpected features of the newly prepared compounds are the remarkable modes of self-assembly of the diols (P)-14, (E)-(3S,3'S,4S,4'S,5R,5'R)-21, (P)-(+)-22, and (E)-31 in the solid state through frameworks of intermolecular hydrogen bonds leading to, depending on the respective structure, nanotube- [(P)-14, (P)-(+)-22, and (E)-31], honeycomb-like structures [(E)-(3S,3'S,4S,4'S,5R,5'R)-21] or a supramolecular double helix [(P)-(+)- and (M)-(-)-22]. Liquid crystalline properties of the esters and ethers of the diols (P)-14, (P)-, and (M)-22 have also been tested. Although all of these [n]triangulanes have no chromophore which would lead to significant absorptions above 200 nm, they exhibit surprisingly high specific rotations even at 589 nm with [alpha](20)(D)=+672.9 (c=0.814 in CHCl(3)) for (P)-(+)-17, +909.9 (c=0.96 in CHCl(3)) for (P)-(+)-25, -890.5 (c=1.01 in CHCl(3)) for (M)-(-)-25, and -1302.5 (c=0.36 in CHCl(3)) for (M)-(-)-39, and the specific rotations increase drastically on going to shorter wavelengths. This outstanding rotatory power is in line with their rather rigid helical arrangement of sigma bonds, and accordingly these helically shaped unbranched [n]triangulanes may be termed "sigma-[n]helicenes", as they represent the sigma-bond analogues of the aromatic pi-[n]helicenes. Density functional theory (DFT) computations at the B3 LYP/6-31+G(d,p) level of theory for the geometry optimization and time-dependent DFT for determining optical rotations with a triplet-zeta basis set (B3 LYP/TZVP) reproduce the optical rotatory dispersions (ORD) very well for the lower members (n=4, 5) of the sigma-[n]helicenes. For the higher ones (n=7, 9, 15) the computed specific rotations turn out increasingly larger than the experimental values. The remarkable increase of the specific rotation with an increasing number of three-membered rings is proportional neither to the molecular weight nor to the number of cyclopropane rings in these sigma-[n]helicenes.  相似文献   

2.
A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro[4.5]decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [(2)H(4)]-regioisomers, 10,10,11,11-[(2)H(4)] and 4,4,5,5-[(2)H(4)] of 3 and 4,4,5,5-[(2)H(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.  相似文献   

3.
Optical rotation, the angle through which plane-polarized light rotates when passed through an enantiomerically pure medium, plays a vital role in the determination of the absolute configurations of chiral molecules such as natural products. We describe new quantum mechanical methodology designed to assist in this endeavor by providing high-accuracy computational optical rotatory dispersion data for matching to experimental results. Comparison between theory and experiment for the rigid, helical molecule trispiro[2.0.0.2.1.1]nonane [also known as (P)-(+)-[4]triangulane], recently synthesized with enantiomeric purity, shows that the coupled cluster quantum chemical model provides superb agreement for optical rotation across a wide range of wavelengths (589-365 nm), with errors averaging only 1%.  相似文献   

4.
Treatment of {eta(5):eta(1)[2-(di-tert-butylphosphanyl-P)ethyl]cyclopentadienyl}cobalt(I) chloride (5) with methylenecyclopropane (3) or bicyclopropylidene (4), as well as with their spirocyclopropanated analogues methylenespiropentane (7), cyclopropylidenespiropentane (10), or 7,7'-bi(dispiro[2.0.2.1]heptylidene) (15) in the presence of sodium amalgam at -50 degrees C, furnished the stable cobalt complexes 6, 9, 8, 11, and 16, respectively, in 72, 83, 84, 86, and 54 % isolated yield, respectively. The complexes 14 and 16 were also obtained by ligand exchange of the ethene complex {eta(5):eta(1)[2-(di-tert-butylphosphanyl-P)ethyl]cyclopentadienyl}(eta(2)-ethene)cobalt(I) (12) with 13 and 15 in 79 and 52 % yield, respectively. The X-ray crystal-structure analyses of complexes 9, 14, and 16, as well as the NMR-spectroscopic data of all complexes, reveal that they can be regarded as linear and branched cobalta[n]triangulanes. The thermal stability of complexes 6, 8, and 9 up to 109, 145, and 160 degrees C was determined by differential thermal analysis-thermogravimetry (DTA-TG) analysis.  相似文献   

5.
Epoxidation of bullvalene (1) with a neutralized solution of Oxone gave racemic trisepoxide rac-6 in 93 % isolated yield. Its structure was examined by X-ray crystallography. The two enantiomers of 6 were separated by preparative HPLC and exhibited specific rotations of [alpha](25)(D)= +160, [alpha](25)(365)= +567 (c=0.946, CHCl(3)) for the firstly eluted and [alpha](25)(D)= -157, [alpha](25)(365)= -554 (c=0.986, CHCl3) for the secondly eluted enantiomer of 6. The geometry of (+)-6 and the absolute configuration of (-)-6 were determined by X-ray crystal structure analysis and anomalous diffraction, respectively. According to this, (-)-6 possesses (3R,5S,7S,9R,11R,13S)- and (+)-6 has (3S,5R,7R,9S,11S,13R)-configuration. Upon treatment with BF(3)Et(2)O at -78 degrees C, trisepoxide rac-6 rearranges with retention of the skeletal three-membered carbocycle to give the cage trisether rac-8, as proved by X-ray crystal structure analysis, in virtually quantitative yield. Enantiomers of rac-8 were separated by preparative HPLC and exhibited specific rotations of [alpha](25)(D)= +49, [alpha](25)(365)= +170 (c=1.01, CHCl3) (firstly eluting) and [alpha](25)(D)= -46, [alpha](25)(365)= -160 (c=1.02, CHCl(3)) (secondly eluting enantiomer). The absolute configuration of (-)-8 was determined by anomalous diffraction to be (1R,3R,7R,9R,11R,13R). DFT computations at the TD-B3 LYP/6-31+G(d,p)//B3 LYP/6-31+G(d) level of theory for (3R,5S,7S,9R,11R,13S)-6 and (1R,3R,7R,9R,11R,13R)-8 predicted specific rotations of -206.7 and -83.4, respectively. Acid-catalyzed isomerization of the enantiomerically pure (+)-6 proceeded without racemization to give exclusively (-)-8, and (-)-6 provided only (+)-8. Thus, this isomerization occurs with ring opening of the three C--O bonds in the epoxide moieties in the alpha-position relative to the three-membered carbocycle rather than in the beta-position.  相似文献   

6.
The synthesis of the enantiomerically pure bis(hydroxymethyl)-branched cyclohexenyl and cyclohexyl purines is described. Racemic trans-4,5-bis(methoxycarbonyl)cyclohexene [(+/-)-6] was reduced with lithium aluminum hydride to give the racemic diol (+/-)-7. Resolution of (+/-)-7 via a transesterification process using lipase from Pseudomonas sp. (SAM-II) gave both diols in enantiomerically pure form. The enantiomerically pure diol (S,S)-7was benzoylated and epoxidized to give the epoxide 9. Treatment of the epoxide 9 with trimethylsilyl trifluoromethanesulfonate and 1,5-diazabicyclo[5.4.0]undec-5-ene followed by dilute hydrochloric acid gave (1R,4S,5R)-4,5-bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10). Acetylation of 10 gave (1R,4S,5R)-1-acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11). (1R,4S,5R)-1-Acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11) was converted to the adenine derivative 12 and guanine derivative 13 via palladium(0)-catalyzed coupling with adenine and 2-amino-6-chloropurine, respectively. Hydrogenation of 12 and 13 gave the correspondning saturated adenine derivative 14 and guanine derivative 15. (1R,4S,5R)-4,5-Bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10) was converted to the adenine derivative 16 and guanine derivative 17 via coupling with 6-chloropurine and 2-amino-6-chloropurine, respectively, using a modified Mitsunobu procedure. Hydrogenation of 16 and 17 gave the corresponding saturated adenine derivative 18 and guanine derivative 19. Compounds 12-19 were evaluated for activity against human immunodeficiency virus (HIV), but were found to be inactive. Further biological testings are underway.  相似文献   

7.
Cluster excision of polymeric {Mo3S7Cl4}n phases with chiral phosphane (+)-1,2-bis[(2R,5R)-2,5-(dimethylphospholan-1-yl)]ethane ((R,R)-Me-BPE) or with its enantiomer ((S,S)-Me-BPE) yields the stereoselective formation of the trinuclear cluster complexes [Mo3S4{(R,R)-Me-BPE}3Cl3]+ ([(P)-1]+) and [Mo3S4{(S,S)-Me-BPE}3Cl3]+ ([(M)-1]+), respectively. These complexes possess an incomplete cuboidal structure with the metal atoms defining an equilateral triangle and one capping and three bridging sulfur atoms. The P and M symbols refer to the rotation of the chlorine atoms around the C3 axis, with the capping sulphur atom pointing towards the viewer. Incorporation of copper into these trinuclear complexes affords heterodimetallic cubane-type compounds of formula [Mo3CuS4{(R,R)-Me-BPE}3Cl4]+ ([(P)-2]+) or [Mo3CuS4{(S,S)-Me-BPE}3Cl4]+ ([(M)-2]+), respectively, for which the chirality of the trinuclear precursor is preserved in the final product. Cationic complexes [(P)-1]+, [(M)-1]+, [(P)-2]+, and [(M)-2]+ combine the chirality of the metal cluster framework with that of the optically active diphosphane ligands. The known racemic [Mo3CuS4(dmpe)3Cl4]+ cluster (dmpe = 1,2-bis(dimethylphosphanyl)ethane) as well as the new enantiomerically pure Mo3CuS4 [(P)-2]+ and [(M)-2]+ complexes are efficient catalysts for the intramolecular cyclopropanation of 1-diazo-5-hexen-2-one (3) and for the intermolecular cyclopropanation of alkenes, such as styrene and 2-phenylpropene, with ethyl diazoacetate. In all cases, the cyclopropanation products were obtained in high yields. The diastereoselectivity in the intermolecular cyclopropanation of the alkenes and the enantioselectivity in the inter- or intramolecular processes are only moderate.  相似文献   

8.
Zhou HC  Su W  Achim C  Rao PV  Holm RH 《Inorganic chemistry》2002,41(12):3191-3201
High-nuclearity Mo[bond]Fe[bond]S clusters are of interest as potential synthetic precursors to the MoFe(7)S(9) cofactor cluster of nitrogenase. In this context, the synthesis and properties of previously reported but sparsely described trinuclear [(edt)(2)M(2)FeS(6)](3-) (M = Mo (2), W (3)) and hexanuclear [(edt)(2)Mo(2)Fe(4)S(9)](4-) (4, edt = ethane-1,2-dithiolate; Zhang, Z.; et al. Kexue Tongbao 1987, 32, 1405) have been reexamined and extended. More accurate structures of 2-4 that confirm earlier findings have been determined. Detailed preparations (not previously available) are given for 2 and 3, whose structures exhibit the C(2) arrangement [[(edt)M(S)(mu(2)-S)(2)](2)Fe(III)](3-) with square pyramidal Mo(V) and tetrahedral Fe(III). Oxidation states follow from (57)Fe M?ssbauer parameters and an S = (3)/(2) ground state from the EPR spectrum. The assembly system 2/3FeCl(3)/3Li(2)S/nNaSEt in methanol/acetonitrile (n = 4) affords (R(4)N)(4)[4] (R = Et, Bu; 70-80%). The structure of 4 contains the [Mo(2)Fe(4)(mu(2)-S)(6)(mu(3)-S)(2)(mu(4)-S)](0) core, with the same bridging pattern as the [Fe(6)S(9)](2-) core of [Fe(6)S(9)(SR)(2)](4-) (1), in overall C(2v) symmetry. Cluster 4 supports a reversible three-member electron transfer series 4-/3-/2- with E(1/2) = -0.76 and -0.30 V in Me(2)SO. Oxidation of (Et(4)N)(4)[4] in DMF with 1 equiv of tropylium ion gives [(edt)(2)Mo(2)Fe(4)S(9)](3-) (5) isolated as (Et(4)N)(3)[5].2DMF (75%). Alternatively, the assembly system (n = 3) gives the oxidized cluster directly as (Bu(4)N)(3)[5] (53%). Treatment of 5 with 1 equiv of [Cp(2)Fe](1+) in DMF did not result in one-electron oxidation but instead produced heptanuclear [(edt)(2)Mo(2)Fe(5)S(11)](3-) (6), isolated as the Bu(4)N(+)salt (38%). Cluster 6 features the previously unknown core Mo(2)Fe(5)(mu(2)-S)(7)(mu(3)-S)(4) in molecular C(2) symmetry. In 4-6, the (edt)MoS(3) sites are distorted trigonal bipramidal and the FeS(4) sites are distorted tetrahedral with all sulfide ligands bridging. M?ssbauer spectroscopic data for 2 and 4-6 are reported; (mean) iron oxidation states increase in the order 4 < 5 approximately 1 < 6 approximately 2. Redox and spectroscopic data attributed earlier to clusters 2 and 4 are largely in disagreement with those determined in this work. The only iron and molybdenum[bond]iron clusters with the same sulfide content as the iron[bond]molybdenum cofactor of nitrogenase are [Fe(6)S(9)(SR)(2)](4-) and [(edt)(2)Mo(2)Fe(4)S(9)](3-)(,4-).  相似文献   

9.
New enantiopure imines (1-9) with a chiral substrate to control the stereochemistry of a newly created stereogenic center have been synthesized by reaction of the commercially available (1R)-(-)-myrtenal and different primary amines. The diastereomerically enriched lithium-scorpionate compounds [Li(κ(3)-mobpza)(THF)] (10) (mobpza = N-p-methylphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-mobpza)(THF)] (11) (mobpza = N-p-methoxyphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-fbpza)(THF)] (12) (fbpza = N-p-fluorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), and [Li(κ(3)-clbpza)(THF)] (13) (clbpza = N-p-chlorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide) were obtained by a diastereoselective 1,2-addition of an organolithium reagent to imines in good yield and with good diastereomeric excess (ca. 80%). The complexes [LiCl(κ(2)-R,R-fbpzaH)(THF)] (14) and [LiCl(κ(2)-R,R-clbpzaH)(THF)] (15) were obtained in enantiomerically pure form by the treatment of THF solutions of 12 or 13 with NH(4)Cl. The enantiomerically pure amines (R,R-mbpzaH) (16), (R,R-mobpzaH) (17), (R,R-fbpzaH) (18), and (R,R-clbpzaH) (19) were obtained by hydrolysis of the lithium-scorpionate compounds 10-13 with H(2)O. The lithium compound 12 was reacted with [TiCl(4)(THF)(2)] or [ZrCl(4)] to give the enantiopure complexes [MCl(3)(κ(3)-R,R-fbpza)] [M = Ti (20), Zr (21)]. The amine compound 18 reacted with [MX(4)] (M = Ti, X = O(i)Pr, OEt; M = Zr; X = NMe(2)) to give the complexes [MX(3)(κ(3)-R,R-fbpza)] (22-24). The reaction of Me(3)SiCl with [Zr(NMe(2))(3)(κ(3)-R,R-fbpza)] (24) in different molar ratios led to the halide-amide-containing complexes [ZrCl(NMe(2))(2)(κ(3)-R,R-fbpza)] (25) and [ZrCl(2)(NMe(2))(κ(3)-R,R-fbpza)] (26) and the halide complex 21. The isolation of only one of the three possible diastereoisomers of complexes 25 and 26 revealed that chiral induction from the ligand to the zirconium center took place. The structures of these compounds were elucidated by (1)H and (13)C{(1)H} NMR spectroscopy, and the X-ray crystal structures of 5, 12, 14, 15, and 24 were also established.  相似文献   

10.
The 4-phosphacyclohexanones, 2,2,6,6-tetramethyl-1-phenyl-4-phosphorinanone (La), 1,2,6-triphenyl-4-phosphorinanone ((Ph)Lb), 1-cyclohexyl-2,6-diphenyl-4-phosphorinanone ((Cy)Lb) and 1-tert-butyl-2,6-diphenyl-4-phosphorinanone ((Bu)Lb) have been made by modifications of literature methods. Phosphines (R)Lb are each formed as mixtures of meso- and rac-diastereoisomers. Isomerically pure rac-(Ph)Lb, rac-(Cy)Lb and meso-(Bu)Lb can be isolated by recrystallisation from MeCN. Heating mixtures of isomers of (R)Lb with TsOH leads to isomerisations to give predominantly the meso-(R)Lb. The complex trans-[PdCl2(La)2] (1) is readily made from [PdCl2(NCPh)2] but the analogous platinum complex 2 has not been detected and instead, cyclometallation at the 3-position (alpha to the ketone) in the phosphacycle occurs to give trans-[PtCl(La)(La-3H)] (3) (where La-3H = La deprotonated at the 3-position) featuring a [3.1.1]metallabicycle as confirmed by X-ray crystallography. The analogous palladabicycle 4 has been detected upon treatment of 1 with Et3N in refluxing toluene. The type of complex formed by (R)Lb depends on which diastereoisomer (meso or rac) is involved. rac-(Ph)Lb (a mixture of R,R- and S,S-enantiomers, labelled alpha and beta) forms trans-[MCl2(rac-(Ph)Lb)2], M = Pd (5) or Pt (6), as mixtures of diastereoisomers (alphaalpha/betabeta and alphabeta forms). The structure of alphaalpha-6 has been determined by X-ray crystallography. Ligand competition experiments monitored by 31P NMR showed that Pd(II) and Pt(II) have a significant preference to bind rac-(Ph)Lb over meso-(Ph)Lb. meso-(Bu)Lb reacts with [PtCl2(NCBu(t))2] under ambient conditions to give the binuclear complex [Pt2Cl2(meso-(Bu)Lb-2'H)2] (7) where orthometallation has occurred on one of the exocyclic phenyl substituents as confirmed by X-ray crystallography. rac-(Bu)Lb reacts with [PtCl2(NCBu(t))2] to give a mononuclear cyclometallated species assigned the structure trans-[PtCl(rac-(Bu)Lb-2'H)((Bu)Lb)] (8) on the basis of its 31P NMR spectrum. rac-(Cy)Lb reacts with [PtCl2(NCBu(t))2] in refluxing toluene to give trans-[PtCl2(rac-(Cy)Lb)2] (9) and the crystal structure of alphabeta-9 has been determined.  相似文献   

11.
A Hartwig-Buchwald addition of a variety of chiral amines to rac-4-bromo-[2.2]paracyclophane and rac-trifluoromethanesulfonic acid (4-[2.2]paracyclophane) ester was performed with high diastereoselectivities. Kinetic racemic resolution of the starting materials was achieved, providing a rapid access to enantiomerically enriched 4-bromo-[2.2]paracyclophane and the corresponding enantiomerically pure [2.2]paracyclophane amines. Additionally, the first reaction of a secondary amine with a [2.2]paracyclophane halide was achieved.  相似文献   

12.
The synthesis of chiral aluminum and yttrium alkoxides and their application for lactide polymerization are reported. The complexes (SalBinap)MOR [4, M = Al, R = (i)Pr; 5, M = Y, R = (CH(2))(2)NMe(2)] are synthesized by reacting the ligand (SalBinap)H(2) [2,2'-[(1,1'-binaphthalene)-2,2'-diylbis(nitrilomethylidyne)]bisphenol] with the appropriate metal trisalkoxide. While enantiomerically pure yttrium complex 5 did not effect stereocontrol in the polymerization of either meso- or rac-lactide, homochiral 4 was found to exhibit excellent stereocontrol in a range of lactide polymerizations. Enantiomerically pure 4 polymerizes meso-lactide to syndiotactic poly(lactic acid) (PLA), while rac-4 polymerizes meso- and rac-lactide to heterotactic and isotactic stereoblock PLA, respectively. On the basis of the absolute stereochemistry of ring-opening of meso-lactide using (R)-4, a polymer exchange mechanism is proposed to account for the PLA microstructures resulting from rac-4.  相似文献   

13.
The reactivity of various 2-oxyallyl cations toward 2,2'-methylenedifuran (1b), 2,2'-(hydroxymethyl)difuran (1c), 2,2'-(trimethylsilylmethylene)difuran (1d), and di(2-furyl)methanone (1e) has been explored. Difuryl derivatives 1c, 1d, and 1e refused to undergo formal double [4+3]-cycloadditions. Conditions have been found to convert 1b into meso-1,1'-methylenedi[(1R,1'S,5S,5'R)- (3) and (+/-)-1,1'-methylenedi[(1RS,1'SR,5SR,5'RS)-8-oxabicyclo[3.2.1]oct-6-en-3-one] (4) that do not require CF(3)CH(OH)CF(3) as solvent. High yields of meso-1,1'-methylenedi[(1R,1'S,2S,2'R,4R,4'S,5S,5'R)- (5) and (+/-)-1,1'-methylenedi[(1RS,1'RS,2SR,2'SR,4RS,4'RS,5SR,5'SR)-2,4-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one] (6) have been obtained when 1b was reacted with 2,4-dibromopentan-3-one (7h) and NaI/Cu.  相似文献   

14.
Lipase TL-mediated kinetic resolution of benzoin proceeded to give the corresponding optically pure (R)-benzoin (R)-1. On the other hand, (S)-benzoin O-acetate (S)-7 could be hydrolyzed without epimerization to give (S)-benzoin (S)-1 under alkaline conditions. Furthermore, both enantiomers of benzoin (1) were converted to [(15)N]-(1R,2S)- and (1S,2R)- 2-amino-1,2-diphenylethanol (3a and 3b), respectively, according to the procedure reported previously. [2,3-(13)C(2),(15)N]-(5S,6R)-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one (10) was synthesized from ethyl [1,2-(13)C(2)]bromoacetate and (1R,2S)-2-amino-1,2-diphenylethanol (3b) in three steps. Finally, [2,3-(13)C(2),(15)N]-L-alanine (12) was prepared via alkylation of the lactone 10 and hydrogenation of the alkylated product 11.  相似文献   

15.
Protected racemic and enantiomerically pure 3,4-(aminomethano)prolines rac-9 and (2S,2'R,3R,4R)-9 have been prepared applying a titanium-mediated reductive cyclopropanation as a key step. Thus, cyclopropanations of N,N-dibenzylformamide with titanacyclopropanes generated in situ from racemic or enantiomerically pure tert-butyl N-Boc-3,4-dehydroprolinates rac-8 or (S)-8 proceed diastereoselectively, and furnish the protected racemic and enantiomerically pure diamino acid 9. The latter was incorporated into three tripeptides containing glycyl, alanyl and phenylalanyl moieties.  相似文献   

16.
Optically active 2-[4-(4-benzhydryl-1-piperazinyl)phenyl]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate [(S)-(+)-1 and (R)-(-)-1] hydrochlorides were synthesized with high optical purities from (R)-(-)- and (S)-(+)-1,4-dihydro-5-methoxycarbonyl-2,6-dimethyl-4-(3-nitrophenyl)- 3-pyridinecarboxylic acids [(R)-(-)-6 and (S)-(+)-6], which are available from (+/-)-6 by optical resolution using quinidine and cinchonidine, respectively. From pharmacological investigations of (S)-(+)-1 and (R)-(-)-1 such as the antihypertensive effect on spontaneously hypertensive rats and inhibition of [3H]nimodipine binding to rat cardiac membrane homogenate, the active form of 1 was defined to be the (4S)-(+)-enantiomer of 1.  相似文献   

17.
[reaction: see text] The facile stereoselective syntheses of endo-8-hydroxybicyclo[3.3.1]nonan-2-one and endo-7-hydroxybicyclo[3.2.1]octan-2-one, featuring an alpha-amino acid catalyzed intramolecular aldolization of sigma-symmetric substrates, are described. A high enantioselectivity and a high catalytic efficiency have been exhibited by (4R,2S)-tetrabutylammonium 4-TBDPSoxy-prolinate in the aldolization of 3-(4-oxocyclohexyl)propionaldehyde to give highly enantiomerically enriched (1S,5R,8R)-8-hydroxybicyclo[3.3.1]nonan-2-one.  相似文献   

18.
The complexes [(DMPP)2M(CH3CN2)]X2 (DMPP = 3,4-dimethyl-1-phenylphosphole; M = Pd, Pt; X = BF4-, NO3-, ClO4-) react with 2 equiv of the dienophiles N,N-dimethylacrylamide (DMAA), 2-vinylpyridine (VyPy), and diphenylvinylphosphine (DPVP) to form bis-[4 + 2] Diels-Alder cycloaddition products. The [M(DMPP)2(DMAA)2]2+ and [M(DMPP)2(VyPy)2]2+ complexes form exclusively as the cis-geometric isomers, whereas for [M(DMPP)2(DPVP)2]2+, both cis- and trans-geometric isomers are formed. The two Diels-Alder cycloadditions occur sequentially, and the absolute configuration of the first reaction influences the absolute configuration of the second. In all cases, recemic mixtures of the (R,R) and (S,S) diastereomers are formed; none of the meso (R,S) diastereomer is observed. New complexes were characterized by elemental analyses, physical properties, infrared spectroscopy, 1H, 1H(31P), 13C(1H), and 31P(1H) NMR spectroscopy, and, in most cases, X-ray crystallography.  相似文献   

19.
A series of racemic and optically pure aminoalkylferrocenyldichlorophosphanes has been prepared by reaction of phosphorus trichloride with the corresponding lithiated aminoalkylferrocene precursors. Crystal structures of racemic 1-dichlorophosphanyl-2-N,N-dimethylaminomethylferrocene, racemic 1-dichlorophosphanyl-2-N,N-dimethylaminomethyl-3-triphenylsilylferrocene and (S)-N,N-dimethyl-1-[(R)-2-(dichlorophosphanyl)ferrocenyl]ethylamine reveal short intramolecular N[dot dot dot]P distances, which are suggestive of weak N --> P dative bonds. The aminoalkylferrocenyldichlorophosphanes can be used for the preparation of the corresponding primary phosphanes, one of which was characterised by X-ray crystallography. Optically pure (R)-N,N-dimethyl-1-[(S)-2-(phosphanyl)ferrocenyl]ethylamine can easily be lithiated twice to give the first enantiomerically pure lithium-phosphorus closo cluster compound, which was also structurally characterised.  相似文献   

20.
1-甲基 - 7-氧杂双环 [2 .2 .1 ]庚烷 - 2 -酮 ( 1 )是萜类天然产物全合成中的重要中间体 ,能被广泛地应用于多种桉烷 ( Eudesmane)、沉香呋喃 ( Agarofuran)和降胡萝卜素 ( Norcarotenoids)等倍半萜天然产物的全合成[1,2 ] .我们以对映体纯化合物 1为原料 ,实现这类天然产物的不对称全合成 [3~ 6 ] .消旋的化合物 (± ) - 1可以 2 -甲基呋喃和 2 -氯丙烯腈为原料 ,经 3步反应得到 [2 ] .但对映体纯化合物 1的制备尚未见报道 .本文用化学拆分方法 ,成功地制备了对映体纯的 ( + ) - 1和 ( - ) - 1 ,并确定了其绝对构型 .1 结果与讨论为减…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号