首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The syntheses of monomeric nucleosides and 3'-O-phosphoramidite building blocks en route to alpha-L-ribo-configured locked nucleic acids (alpha-L-LNA), composed entirely of alpha-L-LNA monomers (alpha-L-ribo configuration) or of a mixture of alpha-L-LNA and DNA monomers (beta-D-ribo configuration), are described and the alpha-L-LNA oligomers are studied. Bicyclic 5-methylcytosin-1-yl and adenine-9-yl nucleoside derivatives have been prepared and the phosphoramidite approach has been used for the automated oligomerization leading to alpha-L-LNA oligomers. Binding studies revealed very efficient recognition of single-stranded DNA and RNA target oligonucleotide strands. Thus, stereoirregular alpha-L-LNA 11-mers containing a mixture of alpha-L-LNA monomers and DNA monomers ("mix-mer alpha-L-LNA") were shown to display DeltaT(m) values of +1 to +3 degrees C per modification toward DNA and +4 to +5 degrees C toward RNA when compared with the corresponding unmodified DNA x DNA and DNA x RNA reference duplexes. The corresponding DeltaT(m) values per modification for the stereoregular fully modified alpha-L-LNA were determined to be +4 degrees C (against DNA) and +5 degrees C (against RNA). 11-Mer alpha-L-LNAs (mix-mer alpha- L-LNA or fully modified alpha- L-LNA) were shown in vitro to be significantly stabilized toward 3'-exonucleolytic degradation. A duplex formed between RNA and either mix-mer alpha-L-LNA or fully modified alpha-L-LNA induced in vitro Escherichia coli RNase H-mediated cleavage, albeit very slow, of the RNA targets at high enzyme concentrations.  相似文献   

2.
3.
Using UV melting and CD spectroscopy, we show that alpha-l-LNA-modified oligonucleotides possess the ability to form triplexes at pH 6.8 with significantly increased thermostability relative to DNA triplexes.  相似文献   

4.
We have used NMR and CD spectroscopy to study and characterise two alpha-L-LNA:DNA duplexes, a nonamer that incorporates three alpha-L-LNA nucleotides and a decamer that incorporates four alpha-L-LNA nucleotides, in which alpha-L-LNA is alpha-L-ribo-configured locked nucleic acid. Both duplexes adopt right-handed helical conformations and form normal Watson-Crick base pairing with all nucleobases in the anti conformation. Deoxyribose conformations were determined from measurements of scalar coupling constants in the sugar rings, and for the decamer duplex, distance information was derived from 1H-1H NOE measurements. In general, the deoxyriboses in both of the alpha-L-LNA:DNA duplexes adopt S-type (B-type structure) sugar puckers, that is the inclusion of the modified alpha-L-LNA nucleotides does not perturb the local native B-like double-stranded DNA (dsDNA) structure. The CD spectra of the duplexes confirm these findings, as these display B-type characteristic features that allow us to characterise the overall duplex type as B-like. The 1H-1H NOE distances which were determined for the decamer duplex were employed in a simulated annealing protocol to generate a model structure for this duplex, thus allowing a more detailed inspection of the impact of the alpha-L-ribo-configured nucleotides. In this structure, it is evident that the malleable DNA backbone rearranges in the vicinity of the modified nucleotides in order to accommodate them and present their nucleobases in a geometry suitable for Watson-Crick base pairing.  相似文献   

5.
6.
Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA   总被引:12,自引:0,他引:12  
Locked nucleic acid is an RNA derivative in which the ribose ring is constrained by a methylene linkage between the 2'-oxygen and the 4'-carbon. This conformation restriction increases binding affinity for complementarity sequences and provides an exciting new chemical approach for the control of gene expression and optimization of microarrays.  相似文献   

7.
Locked nucleic acids (LNAs) containing one or more 2'-O,4'-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. unprecedented helical thermostability when hybridized with cognate RNA and DNA. To acquire a detailed understanding of the structural features of LNA giving rise to its remarkable properties, we have conducted structural studies by use of NMR spectroscopy and now report high-resolution structures of two LNA:RNA hybrids, the LNA strands being d(5'-CTGAT(L)ATGC-3') and d(5'-CT(L)GAT(L)AT(L)GC-3'), respectively, T(L) denoting a modified LNA monomer with a thymine base, along with the unmodified DNA:RNA hybrid. In the structures, the LNA nucleotides are positioned as to partake in base stacking and Watson-Crick base pairing, and with the inclusion of LNA nucleotides, we observe a progressive change in duplex geometry toward an A-like duplex structure. As such, with the inclusion of three LNA nucleotides, the hybrid adopts an almost canonical A-type duplex geometry, and thus it appears that the number of modifications has reached a saturation level with respect to structural changes, and that further incorporations would furnish only minute changes in the duplex structure. We attempt to rationalize the conformational steering induced by the LNA nucleotides by suggesting that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.  相似文献   

8.
Two LNA (locked nucleic acid) stereoisomers (beta-L-LNA and alpha-D-LNA) are evaluated in the mirror-image world, that is by the study of two mixed sequences of LNA and alpha-L-LNA and their L-DNA and L-RNA complements. Both are found to display high-affinity RNA-recognition by the formation of duplexes with parallel strand orientation.  相似文献   

9.
LNA (locked nucleic acid) and analogs as triplex-forming oligonucleotides   总被引:3,自引:0,他引:3  
The triplex-forming abilities of some conformationally restricted nucleotide analogs are disclosed and compared herein. 2'-Amino-LNA monomers proved to be less stabilising to triplexes than LNA monomers when incorporated into a triplex-forming third strand. N2'-functionalisation of 2'-amino-LNA monomers with a glycyl unit induced the formation of exceptionally stable triplexes. Nucleotide analogs containing a C2',C3'-oxymethylene linker (E-type furanose conformation) or a C2',C4'-propylene linker (N-type furanose conformation) had no significant effect on triplex stability proving that conformational restriction per se is insufficient to stabilise triplexes.  相似文献   

10.
Locked nucleic acid (LNA) is a conformationally restricted nucleic acid analogue, which is potentially a better alternative than DNA for application in the nucleic acid based biosensor technologies, due to its efficient and sequence-specific DNA/RNA detection capability and lack of molecule-surface interaction on solid surfaces, compared to DNA. We report, for the first time, a straightforward way (based on simple immersion method) of generating an ordered self-assembled LNA monolayer, which is bioactive, onto a gold(111) surface. This layer is capable of giving rise to a stronger DNA recognition signal (4-4.5 times) than its DNA counterpart, and importantly, it can differentiate between a fully complementary DNA target and that having a single base mismatch, where the mismatch discrimination ratio is almost two times compared to the ratio relevant in case of DNA-based detection. We have presented high-resolution atomic force microscopy (AFM) topographs of the well-defined one-dimensional LNA molecular ordering (few hundred nanometers long) and of the two-dimensional ordered assembly formed over a large area (7 μm × 7 μm) due to parallel positioning of the one-dimensional ordered arrangements. The effects of different parameters such as LNA concentration and incubation time on LNA self-assembly have been investigated. Further, reflection absorption infrared (RAIR) spectroscopy has been applied to obtain information about the orientation of the surface-immobilized LNA molecules for the first time. It has been found that the LNA molecules undergo an orientational transition from the "lying down" to the "upright" configuration in a time scale of few hours.  相似文献   

11.
In recent years, fluorescently labeled oligonucleotides have become a widely used tool in diagnostics, DNA sequencing, and nanotechnology. The recently developed (phenylethynyl)pyrenes are attractive dyes for nucleic acid labeling, with the advantages of long-wave emission relative to the parent pyrene, high fluorescence quantum yields, and the ability to form excimers. Herein, the synthesis of six (phenylethynyl)pyrene-functionalized locked nucleic acid (LNA) monomers M(1)-M(6) and their incorporation into DNA oligomers is described. Multilabeled duplexes display higher thermal stabilities than singly modified analogues. An increase in the number of phenylethynyl substituents attached to the pyrene results in decreased binding affinity towards complementary DNA and RNA and remarkable bathochromic shifts of absorption/emission maxima relative to the parent pyrene fluorochrome. This bathochromic shift leads to the bright fluorescence colors of the probes, which differ drastically from the blue emission of unsubstituted pyrene. The formation of intra- and interstrand excimers was observed for duplexes that have monomers M(1)-M(6) in both complementary strands and in numerous single-stranded probes. If more phenylethynyl groups are inserted, the detected excimer signals become more intense. In addition, (phenylethynyl)pyrenecarbonyl-LNA monomers M(4), M(5), and M(6) proved highly useful for the detection of single mismatches in DNA/RNA targets.  相似文献   

12.
Two bicyclic 2'-deoxynucleoside analogues containing a saturated and an unsaturated three-carbon 2',4'-linkage, respectively, have been synthesized using a ring-closing metathesis-based linear strategy starting from uridine. Both analogues have been incorporated into oligodeoxynucleotide sequences and increased the stability of DNA:RNA hybrid duplexes (DeltaT(m) approximately 2.5-5.0 degrees C per modification) and decreased the stability of dsDNA duplexes (DeltaT(m) approximately 2.5-1.0 degrees C per modification). CD spectroscopy revealed that the bicyclic nucleosides induced formation of A-type-like duplexes albeit to a lesser degree than found for locked nucleic acid (LNA) monomers. From the CD data and UV melting analysis, we propose that the 2'-oxygen atom of the bicyclic moiety is essential for the formation of stabilized A-type-like dsDNA but not for the formation of a stabilized A-type DNA:RNA hybrid.  相似文献   

13.
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.  相似文献   

14.
A molecular dynamics (MD) simulation, synthesis and very efficient hybridization for a series of N-acylated and N-alkylated derivatives of 2'-amino-LNA are reported.  相似文献   

15.
[reaction: see text] A practical and efficient method for PNA synthesis using an azide group to mask the N-terminus is reported. The deprotection was carried out in 5 min, while couplings were complete within 60 min. The near neutral conditions of the phosphine deprotection combined with the base-free coupling using hydroxybenzotriazole-activated monomers make this approach very mild.  相似文献   

16.
An alpha-D-arabino configured bicyclic nucleoside strongly restricted in an E-type conformation by a 2'-3'-fused oxetane ring is synthesized. Several synthetic strategies toward the target compound are described, and the successful preparation from a D-xylose derivative is based on a ruthenium-mediated cleavage of a double bond, an S(N)2-inversion at the 2-position to give an arabino-configuration, nucleobase coupling, and finally ring closure to give the oxetane ring. The E-type conformation is confirmed by molecular modeling and NMR. The nucleoside is incorporated into short alpha-DNA sequences. In a mixed pyrimidine context, these recognize complementary parallel RNA-sequences with mainly increased affinity and complementary parallel DNA-sequences with decreased affinity. The present bicyclic analogue represents the first conformationally restricted alpha-DNA-analogue to improve nucleic acid recognition in mixmers with alpha-DNA monomers.  相似文献   

17.
A novel pyrene LNA nucleotide monomer is shown to mediate universal hybridization when incorporated into a DNA strand or a 2'-OMe-RNA/LNA chimeric strand. For the latter, high-affinity universal hybridization without compromising the base-pairing selectivity of bases neighbouring the universal pyrene LNA nucleotide monomer is documented.  相似文献   

18.
ROMPgel-supported tris(triphenylphosphine)rhodium(I) chloride has been prepared and the immobilised catalyst has been effectively employed in selective hydrogenations of a variety of alkenes and terminal alkynes.  相似文献   

19.
Synthesis of a BQQ-neomycin conjugate is reported. The conjugate combines two ligands, one known to intercalate triplexes (BQQ) and another known to bind in the triplex groove (neomycin). The conjugate stabilizes T.A.T, as well as mixed base DNA triplex, better than neomycin, BQQ, or a combination of both. The conjugate selectively stabilizes the triplex (in the presence of physiological salt concentrations), with as little as 4 muM of the ligand leading to a DeltaTm of >60 degrees C. Competition dialysis studies show a clear preference for the drug binding to triplex DNA/RNA over the duplex/single strand structures. Modeling studies suggest a structure of neomycin bound to the larger W-H (Watson-Hoogsteen) groove with BQQ intercalated between the triplex bases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号