We also present a result of orbital instability of snoidal standing wave solutions to the Klein–Gordon equation
uttuxx+|u|2u=0.
The main tool to obtain these results is the classical Grillakis, Shatah and Strauss' theory in the periodic context.  相似文献   

8.
耦合BBM方程组孤立波解的轨道稳定性(英文)     
崔丽威  赵烨 《数学进展》2012,(3):341-346
本文研究具有Hamilton形式的耦合BBM方程组孤立波解的轨道稳定性.首先找到两族显式孤立波解.然后通过详细的谱分析证明出孤立波解的轨道稳定性.  相似文献   

9.
A moving Kriging‐based MLPG method for nonlinear Klein–Gordon equation          下载免费PDF全文
Ali Shokri  Ali Habibirad 《Mathematical Methods in the Applied Sciences》2016,39(18):5381-5394
In this paper, the meshless local Petrov–Galerkin approximation is proposed to solve the 2‐D nonlinear Klein–Gordon equation. We used the moving Kriging interpolation instead of the MLS approximation to construct the meshless local Petrov–Galerkin shape functions. These shape functions possess the Kronecker delta function property. The Heaviside step function is used as a test function over the local sub‐domains. Here, no mesh is needed neither for integration of the local weak form nor for construction of the shape functions. So the present method is a truly meshless method. We employ a time‐stepping method to deal with the time derivative and a predictor–corrector scheme to eliminate the nonlinearity. Several examples are performed and compared with analytical solutions and with the results reported in the extant literature to illustrate the accuracy and efficiency of the presented method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Scattering theory for the cubic nonlinear Klein–Gordon system     
Junyong Zhang 《Mathematical Methods in the Applied Sciences》2013,36(14):1825-1844
In this paper, we consider the scattering theory of a nonlinear Klein–Gordon system, which describes the interaction of two scalar fields. The analysis in this paper is an adaptation of the technique used by Nakanishi, which is originally due to Bourgain. The new technical point appears in the localization argument of proving a concentration phenomenon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐order compact scheme for the nonlinear fractional Klein–Gordon equation          下载免费PDF全文
Seakweng Vong  Zhibo Wang 《Numerical Methods for Partial Differential Equations》2015,31(3):706-722
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015  相似文献   

12.
Wave operator for the system of the Dirac–Klein–Gordon equations     
Nakao Hayashi  Masahiro Ikeda  Pavel I. Naumkin 《Mathematical Methods in the Applied Sciences》2011,34(8):896-910
We prove the existence of the wave operator for the system of the massive Dirac–Klein–Gordon equations in three space dimensions x∈ R 3 where the masses m, M>0. We prove that for the small final data , (?, ?)∈ H 2 + µ, 1 × H 1 + µ, 1, with and , there exists a unique global solution for system (1) with the final state conditions Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The decomposition method for studying the Klein–Gordon equation     
Salah M El-Sayed   《Chaos, solitons, and fractals》2003,18(5):1025-1030
In this paper we use Adomian’s decomposition method for solving linear and nonlinear Klein–Gordon and sine-Gordon equations. Analytic and numerical studies are presented. The obtained results show improvements over existing techniques.  相似文献   

14.
On the Spectral Stability of Kinks in 2D Klein–Gordon Model with Parity‐Time‐Symmetric Perturbation          下载免费PDF全文
D. I. Borisov  S. V. Dmitriev 《Studies in Applied Mathematics》2017,138(3):317-342
In a series of recent works by Demirkaya et al., stability analysis for the static kink solutions to the one‐dimensional continuous and discrete Klein–Gordon equations with a ‐symmetric perturbation has been performed. In the present paper, we study two‐dimensional (2D) quadratic operator pencil with a small localized perturbation. Such an operator pencil is motivated by the stability problem for the static kink in 2D Klein–Gordon field taking into account spatially localized ‐symmetric perturbation, which is in the form of viscous friction. Viscous regions with positive and negative viscosity coefficient are balanced. For the considered operator pencil, we show that its essential spectrum has certain critical points generating eigenvalues under the perturbation. Our main results are sufficient conditions ensuring the existence or absence of such eigenvalues as well as the asymptotic expansions for these eigenvalues if they exist.  相似文献   

15.
On the standing wave in coupled non‐linear Klein–Gordon equations     
Jian Zhang 《Mathematical Methods in the Applied Sciences》2003,26(1):11-25
This paper is concerned with the standing wave in coupled non‐linear Klein–Gordon equations. By an intricate variational argument we establish the existence of standing wave with the ground state. Then we derive out the sharp criterion for blowing up and global existence by applying the potential well argument and the concavity method. We also show the instability of the standing wave. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Conservative compact finite difference scheme for the N‐coupled nonlinear Klein–Gordon equations     
Bingquan Ji  Luming Zhang  Xuanxuan Zhou 《Numerical Methods for Partial Differential Equations》2019,35(3):1056-1079
In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the difficulty in obtaining the priori estimate from the discrete energy conservation law, the cut‐off function technique is employed to prove the convergence, which shows the new scheme possesses second order accuracy in time and fourth order accuracy in space, respectively. Additionally, several numerical results are reported to confirm our theoretical analysis. Lastly, we apply the reliable method to simulate and study the collisions of solitary waves numerically.  相似文献   

17.
Solitary Waves and N‐Particle Algorithms for a Class of Euler–Poincaré Equations          下载免费PDF全文
Roberto Camassa  Dongyang Kuang  Long Lee 《Studies in Applied Mathematics》2016,137(4):502-546
We study a class of partial differential equations (PDEs) in the family of the so‐called Euler–Poincaré differential systems, with the aim of developing a foundation for numerical algorithms of their solutions. This requires particular attention to the mathematical properties of this system when the associated class of elliptic operators possesses nonsmooth kernels. By casting the system in its Lagrangian (or characteristics) form, we first formulate a particle system algorithm in free space with homogeneous Dirichlet boundary conditions for the evolving fields. We next examine the deformation of the system when nonhomogeneous “constant stream” boundary conditions are assumed. We show how this simple change at the boundary deeply affects the nature of the evolution, from hyperbolic‐like to dispersive with a nontrivial dispersion relation, and examine the potentially regularizing properties of singular kernels offered by this deformation. From the particle algorithm viewpoint, kernel singularities affect the existence and uniqueness of solutions to the corresponding ordinary differential equations systems. We illustrate this with the case when the operator kernel assumes a conical shape over the spatial variables, and examine in detail two‐particle dynamics under the resulting lack of Lipschitz continuity. Curiously, we find that for the conically shaped kernels the motion of the related two‐dimensional waves can become completely integrable under appropriate initial data. This reduction projects the two‐dimensional system to the one‐dimensional completely integrable Shallow‐Water equation [1], while retaining the full dependence on two spatial dimensions for the single channel solutions. Finally, by comparing with an operator‐splitting pseudospectral method we illustrate the performance of the particle algorithms with respect to their Eulerian counterpart for this class of nonsmooth kernels.  相似文献   

18.
Continuity of the scattering function and Levinson‐type formula of Klein–Gordon equation     
Özkan Karaman  Nida P. Kosar 《Mathematical Methods in the Applied Sciences》2013,36(12):1583-1590
We considered the inverse problem of scattering theory for a boundary value problem on the half line generated by Klein–Gordon differential equation with a nonlinear spectral parameter‐dependent boundary condition. We defined the scattering data, and we proved the continuity of the scattering function S(λ); in a special case, the relation for the difference of the logarithm of the scattering function, which is called the Levinson‐type formula, was obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Solitary Waves and Their Linear Stability in Nonlinear Lattices     
G. Hwang  T. R. Akylas  J. Yang 《Studies in Applied Mathematics》2012,128(3):275-298
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, which span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, hinge upon a certain recurrence relation which contains information beyond all orders of the usual two‐scale perturbation expansion. It follows that only two such positions are permissible, and of those two solitary waves, one is linearly stable and the other unstable. For a cosine lattice, in particular, the two possible solitary waves are centered at a maximum or minimum of the lattice, with the former being stable, and the analytical predictions for the associated linear stability eigenvalues are in excellent agreement with numerical results. Furthermore, a countable set of multi‐solitary‐wave bound states are constructed analytically. In spite of rather different physical settings, the exponential asymptotics approach followed here is strikingly similar to that taken in earlier studies of solitary wavepackets involving a periodic carrier and a slowly varying envelope, which underscores the general value of this procedure for treating multiscale solitary‐wave problems.  相似文献   

20.
The Klein–Gordon Equation in a Domain with Time‐Dependent Boundary     
B. Pelloni  D. A. Pinotsis 《Studies in Applied Mathematics》2008,121(3):291-312
We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time‐dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the propagation of three‐dimensional surface waves in water with an ambient current over a varying bathymetry. When the ambient flow is near the critical speed, under the shallow water assumptions, a forced Benney–Luke (fBL) equation is derived from the Euler equations. An asymptotic approximation of the water's reaction force over the varying bathymetry is derived in terms of topographic stress. Numerical simulations of the fBL equation over a trough are compared to those using a forced Kadomtsev–Petviashvilli equation. For larger variations in the bathymetry that upstream‐radiating three‐dimensional solitons are observed, which are different from the upstream‐radiating solitons simulated by the forced Kadomtsev–Petviashvilli equation. In this case, we show the fBL equation is a singular perturbation of the forced Kadomtsev–Petviashvilli equation which explains the significant differences between the two flows.  相似文献   

2.
In this paper, we establish the orbital stability of a class of spatially periodic wave train solutions to multidimensional nonlinear Klein–Gordon equations with periodic potential. We show that the orbit generated by the one‐dimensional wave train is stable under the flow of the multidimensional equation under perturbations which are, on one hand, coperiodic with respect to the translation or Galilean variable of propagation, and, on the other hand, periodic (but not necessarily coperiodic) with respect to the transverse directions. That is, we show their transverse orbital stability. The class of periodic wave trains under consideration is the family of subluminal rotational waves, which are periodic in the momentum but unbounded in their position.  相似文献   

3.
Convective Linear Stability of Solitary Waves for Boussinesq Equations   总被引:2,自引:0,他引:2  
Boussinesq was the first to explain the existence of Scott Russell's solitary wave mathematically. He employed a variety of asymptotically equivalent equations to describe water waves in the small-amplitude, long-wave regime. We study the linearized stability of solitary waves for three linearly well-posed Boussinesq models. These are problems for which well-developed Lyapunov methods of stability analysis appear to fail. However, we are able to analyze the eigenvalue problem for small-amplitude solitary waves, by comparison to the equation that Boussinesq himself used to describe the solitary wave, which is now called the Korteweg–de Vries equation. With respect to a weighted norm designed to diminish as perturbations convect away from the wave profile, we prove that nonzero eigenvalues are absent in a half-plane of the form R λ>− b for some b >0, for all three Boussinesq models. This result is used to prove the decay of solutions of the evolution equations linearized about the solitary wave, in two of the models. This "convective linear stability" property has played a central role in the proof of nonlinear asymptotic stability of solitary-wave-like solutions in other systems.  相似文献   

4.
In a singular limit, the Klein–Gordon (KG) equation can be derived from the Klein–Gordon–Zakharov (KGZ) system. We point out that for the original system posed on a d‐dimensional torus, the solutions of the KG equation do not approximate the solutions of the KGZ system. The KG system has to be modified to make correct predictions about the dynamics of the KGZ system. We explain that this modification is not necessary for the approximation result for the whole space with d≥3. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Fractional order nonlinear Klein‐Gordon equations (KGEs) have been widely studied in the fields like; nonlinear optics, solid state physics, and quantum field theory. In this article, with help of the Sumudu decomposition method (SDM), a numerical scheme is developed for the solution of fractional order nonlinear KGEs involving the Caputo's fractional derivative. The coupled method provides us very efficient numerical scheme in terms of convergent series. The iterative scheme is applied to illustrative examples for the demonstration and applications.  相似文献   

6.
A transmission (bidomain) problem for the one‐dimensional Klein–Gordon equation on an unbounded interval is numerically solved by a boundary element method‐finite element method (BEM‐FEM) coupling procedure. We prove stability and convergence of the proposed method by means of energy arguments. Several numerical results are presented, confirming theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2042–2082, 2014  相似文献   

7.
In the present paper we show some results concerning the orbital stability of dnoidal standing wave solutions and orbital instability of cnoidal standing wave solutions to the following Klein–Gordon equation:
uttuxx+u−|u|2u=0.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号