首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Modified fundamental solutions are used to show that the system of boundary integral equations in a direct method for the interior Dirichlet problem for the two-dimensional biharmonic equation has at most one solution on any smooth closed boundary contour. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

2.
We study some boundary value problems on two-dimensional polygonal topological networks, where on each face, the considered operator is the biharmonic operator. The transmission conditions we impose along the edges are inspired by the models introduced by H. Le Dret [13] and Destuynder and Nevers [9]. The boundary conditions on the external edges are the classical ones. This class of problem contains the boundary value problems for the biharmonic equation in a plane polygon (see [3, 11, 12, 18]). Conforming to the classical results cited above, we prove that the weak solution of our problem admits a decomposition into a regular part and a singular part, the latter being a linear combination of singular functions depending on the domain and the considered boundary value problem. Finally, we give the exact formula for the coefficients of these singularities.  相似文献   

3.
The two standard approaches for reformulating the interior Dirichlet potential problem as a boundary integral equation of the second kind are discussed. The integral equation derived from the representation of the solution as a double layer is shown to be more general than the one derived from Green's theorem. The boundary integral equation of the latter method, however, has definite analytical and numerical value. From it a new integral equation is derived whose solution can be represented as a convergent Neumann series and it is shown that the Green's function of the first kind can be obtained from it. An example is supplied to illustrate the method.  相似文献   

4.
We derive scalar boundary integral equation formulas for both interior and exterior biharmonic equations with the Dirichlet boundary data. They are based on indirect boundary integral equation formulas, so-called the Chakrabarty and Almansi formulas. The scalar formulas are derived through an unconventional variational approach. The unique solvability results of the formulas are also obtained.  相似文献   

5.
单位圆到任意曲线保角变换的近似计算方法   总被引:4,自引:0,他引:4  
本文讨论了将单位圆内部映射成由任意曲线(包括任意曲线割缝)边界围成的单连通域内部或外部的保角变换问题.以多边形逼近单连通域的边界,采用Schwartz-Christoffel积分建立单位圆与该多边形的映射函数.给出了确定Schwartz-Christoffel积分中未知参数的数值计算方法.  相似文献   

6.
We consider a scalar boundary integral formulation for the biharmonic equation based on the Almansi representation. This formulation was derived by the first author in an earlier paper. Our aim here is to prove the ellipticity of the integral operator and hence establish convergence of and error bounds for Galerkin boundary element methods. The theory applies both in two and three dimensions, but only for star-shaped domains. Numerical results in two dimensions confirm our analysis.  相似文献   

7.
The recently developed Fokas method for solving two‐dimensional Boundary Value Problems (BVP) via the use of global relations is utilized to solve axisymmetric problems in three dimensions. In particular, novel integral representations for the interior and exterior Dirichlet and Neumann problems for the sphere are derived, which recover and improve the already known solutions of these problems. The BVPs considered in this paper can be classically solved using either the finite Legendre transform or the Mellin‐sine transform (which can be derived from the classical Mellin transform in a way similar to the way that the sine transform can be derived from the Fourier transform). The Legendre transform representation is uniformly convergent at the boundary, but it involves a series that is not useful for many applications. The Mellin‐sine transform involves of course an integral but it is not uniformly convergent at the boundary. In this paper: (a) The Legendre transform representation is rederived in a simpler approach using algebraic manipulations instead of solving ODEs. (b) An integral representation, different that the Mellin‐sine transform representation is derived which is uniformly convergent at the boundary. Furthermore, the derivation of the Fokas approach involves only algebraic manipulations, instead of solving an ordinary differential equation.  相似文献   

8.
In this paper, we present a study for a nonlinear problem governed by the biharmonic equation in the plane. Using Green’s formula, the problem is converted into a system of nonlinear integral equations for the unknown data of the boundary. Existence and uniqueness of the solution of the system of nonlinear boundary integral equations is established.  相似文献   

9.
A method is presented for assessing the nature of the error incurred in the boundary integral equation (BIE) solution of both harmonic and biharmonic boundary value problems (BVPs). It is shown to what order of accuracy the governing partial differential equation is actually represented by the approximating numerical scheme, and how raising the order of the boundary ‘shape functions’ affects this representation. The effect of varying both the magnitude and the aspect ratio of the solution domain is investigated; it is found that the present technique may suggest an optimum nondimensional scaling for the BIE solution of a particular harmonic or biharmonic BVP.  相似文献   

10.
Summary. In this paper we propose and analyze an efficient discretization scheme for the boundary reduction of the biharmonic Dirichlet problem on convex polygonal domains. We show that the biharmonic Dirichlet problem can be reduced to the solution of a harmonic Dirichlet problem and of an equation with a Poincaré-Steklov operator acting between subspaces of the trace spaces. We then propose a mixed FE discretization (by linear elements) of this equation which admits efficient preconditioning and matrix compression resulting in the complexity . Here is the number of degrees of freedom on the underlying boundary, is an error reduction factor, or for rectangular or polygonal boundaries, respectively. As a consequence an asymptotically optimal iterative interface solver for boundary reductions of the biharmonic Dirichlet problem on convex polygonal domains is derived. A numerical example confirms the theory. Received September 1, 1995 / Revised version received February 12, 1996  相似文献   

11.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

12.
Bernhard F. Burgeth 《PAMM》2003,2(1):408-409
Biharmonic functions are solutions of the fourth order partial differential equation ΔΔu = 0. A simple method is proposed for deriving integral representation formulae for these functions u on the n‐dimensional ball. Poisson‐type representations in the setting of Hardy Spaces are obtained for biharmonic functions subject to Dirichlet, Riquier and other boundary conditions. The approach exploits algebraic properties of a first order partial differential operator and its resolvent.  相似文献   

13.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

14.
A new method, based on the Kelvin transformation and the Fokas integral method, is employed for solving analytically a potential problem in a non‐convex unbounded domain of ?2, assuming the Neumann boundary condition. Taking advantage of the property of the Kelvin transformation to preserve harmonicity, we apply it to the present problem. In this way, the exterior potential problem is transformed to an equivalent one in the interior domain which is the Kelvin image of the original exterior one. An integral representation of the solution of the interior problem is obtained by employing the Kelvin inversion in ?2 for the Neumann data and the ‘Neumann to Dirichlet’ map for the Dirichlet data. Applying next the ‘reverse’ Kelvin transformation, we finally obtain an integral representation of the solution of the original exterior Neumann problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Using Maz ’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in ℝn. Forn ≥ 8, combinedwitharesultin[18], these estimates lead to the solvability of the Lp Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow us to show that the Lp Dirichlet problem is uniquely solvable for any 2 − ε < p < ∞ and n ≥ 4.  相似文献   

16.
重调和椭圆边值问题的正则积分方程   总被引:1,自引:1,他引:0  
余德浩 《计算数学》1982,4(3):330-336
我们熟知,利用位势理论或由Green公式及基本解出发区域内调和及重调和边值问题可归化为边界上的积分方程。近年来冯康又提出一种更自然而直接的归化,即从Green公式及Green函数出发将微分方程边值问题化为边界上的含有广义函数意义下发散积分有限部分的奇异积分方程,这种归化在各种边界归化中占有特殊地位,被称为正则边界归化,本文将这一理论应用于重调和椭圆边值问题,研究了其正则归化的性质,并通过利用Green函数、Fourier分析及复变函数论方法等不同途径求出了在上半平面、单位圆内部、单位圆外部三种区域的Poisson积分公式及正则积分方程,其离散化可用于实际计算。 本文是在导师冯康教授指导下完成的,作者谨在此对他表示衷心的感谢。  相似文献   

17.
Problems of exterior acoustic scattering may be conveniently formulated by means of boundary integral equations. The problem seeks to find a wave function which gives velocity potential profile, pressure density profile, etc. of the acoustic wave at points in space. At the background of the formulations are two theories viz. (Helmholtz) Potential theory and the Green's representation formula. Potential theory gives rise to the so-called indirect formulation and the Green's representation formula to the direct formulations. Classical boundary integral formulations fail at the eigenfrequencies of the interior domain. That is, if a solution is sought of the exterior problem by first solving a homogeneous boundary integral equation, one is inevitably led to the conclusion that these homogeneous boundary equations have nontrivial solutions at certain wave-numbers which are the eigenvalues of the corresponding interior problem. At lower wave-numbers, these eigenfrequencies are thinly distributed but the higher the wave-number, the denser it becomes. This is a well-known drawback for both time-harmonic acoustics and elastodynamics. This is not a physical difficulty but arises entirely as a result of a deficiency in the integral equation is representation. Why then use It? The use has many advantages notably in that the meshing region is reduced from the infinite domain exterior to the body to its finite surface. This created the need for some robust formulations. A proof of the Kussmaul [1] formulation is presented. The formulation has a hypersingular kernel in the integral operator, which creates a havoc in computation (e.g., ill conditioning). The hyper-singularity can be avoided [2], as a result a new formulation is proposed. This paper presents a broad overview of the Adapted Kussmaul Formulation (AKF).  相似文献   

18.
解重调和问题混合有限元方程的直接方法   总被引:1,自引:1,他引:0  
王烈衡 《计算数学》1986,8(4):417-427
§1.引言 考虑如下重调和方程的齐次边值问题: △~2w=f,在Ω中, w=?w/?v=0,在Ω上.(1.1)其中Ω是平面凸多边形区域,?Ω是Ω的边界,?/?v表示?Ω上的外法向导数.  相似文献   

19.
We consider the problem of a polygonal plate with free edges. It is a boundary value problem for the biharmonic operator on a polygon with Neumann boundary conditions. Its resolution is studied via boundary integral equations. A variational formulation of the boundary problem obtained by a double-layer potential is given. Finally, we implement the method and give numerical results. © 1998 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

20.
We consider a boundary value problem for the Laplace equation outside cuts on a plane. Boundary conditions of the third kind, which are in general different on different sides of each cut, are posed on the cuts. We show that the classical solution of the problem exists and is unique. We obtain an integral representation for the solution of the problem in the form of potentials whose densities are found from a uniquely solvable system of Fredholm integral equations of the second kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号